
Identifying Failures in Machine Learning Potentials

Master Thesis

Supervisor: Prof. Dr. Christian Holm
Supervisor: Prof. Dr. Eric Lutz

Marco Brückner (Mat Nr.: 3120152)
Email: marco.brueckner97@web.de

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references. I am aware that the thesis in digital form
can be examined for the use of unauthorized aid and in order to determine whether
the thesis as a whole or parts incorporated in it may be deemed as plagiarism. For the
comparison of my work with existing sources I agree that it shall be entered in a database
where it shall also remain after examination, to enable comparison with future theses
submitted. Further rights of reproduction and usage, however, are not granted here.
This paper was not previously presented to another examination board and has not been
published.

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbständig angefertigt
habe. Die aus fremden Quellen direkt und indirekt übernommenen Gedanken sind als
solche kenntlich gemacht. Ich weiß, dass die Arbeit in digitalisierter Form daraufhin
überprüft werden kann, ob unerlaubte Hilfsmittel verwendet wurden und ob es sich
– insgesamt oder in Teilen – um ein Plagiat handelt. Zum Vergleich meiner Arbeit
mit existierenden Quellen darf siein eine Datenbank eingestellt werden und nach der
Überprüfung zum Vergleich mit künftig eingehenden Arbeiten dort verbleiben. Weitere
Vervielfältigungs - und Verwertungsrechte werden dadurch nicht eingeräumt. Die Arbeit
wurde weder einer anderen Prüfungsbehörde vorgelegt noch veröffentlicht.

Ort, Datum Marco Brueckner

3

Contents

1. Abstract 7

2. Introduction 8

I. Theory 10

3. Molecular Dynamics Simulations 11
3.1. Classical Molecular Dynamics Simulations 11
3.2. Ab Initio Molecular Dynamics Simulations 12

3.2.1. Density Functional Theory . 13
3.3. Machine Learning Molecular Dynamics . 14
3.4. Material Properties . 16

3.4.1. Diffusion Coefficient . 16
3.4.2. Radial Distribution Function . 17

4. Classical Potentials 18
4.1. Born-Mayer-Huggins-Tosi-Fumi Potential 18
4.2. Coulomb and Wolf Potential . 18

5. Gaussian Approximation Potentials 20
5.1. Gaussian Processes . 20
5.2. Gaussian Process Regression . 20
5.3. An Illustration . 21

6. Descriptors 25
6.1. Smooth Overlap of Atomic Positions . 25
6.2. Atom Centered Symmetry Functions . 26
6.3. Coulomb Matrix . 27
6.4. Software Implementation using QUIP and GAP 28

7. Descriptor Metrics 29

II. Results 31

8. Introduction 32
8.1. Problem . 32

5

8.2. Investigation Procedure . 32

9. Long Range Interactions 34

10.Accuracy of the Fitting Procedure 37
10.1. Investigating Descriptors . 37
10.2. Cutoff variation . 37

10.2.1. Structure and Dynamics . 38
10.3. Training only on virials . 38
10.4. Creating a good NVT potential . 42
10.5. Running NPT simulations . 43
10.6. Density Variation . 44

10.6.1. Temperature Variation . 45
10.6.2. Different training approaches . 45

11.Encountering Problematic Configurations 49

12.Investigation of Descriptor Space 55
12.1. Systems to Study . 56
12.2. Comparing Trajectory . 57
12.3. Comparing distributions . 59

13.Implementing an Active Learner 61
13.1. MLSuite . 61
13.2. Algorithm Structure . 62
13.3. Results . 64

13.3.1. Convergence . 65

14.Summary 68

15.Zusammenfassung 70

16.Acknowledgments 72

6

1. Abstract

We look into different potential causes, that can be responsible for faulty Machine
Learned Potential Energy Surfaces. First we explore the impact of long range inter-
actions by comparing two systems with different potential cutoffs in the context of NPT
simulations. Then we investigate the influence of the quantities that the potential is
being trained on. Next we vary the particle density of the training data and analyze
the consequences for NPT simulations. Then we try to identify which configurations can
cause a Machine Learning simulation to fail. This is done by trying to predict when
the simulation will fail by observing the physical quantities. We compare the config-
uration spaces of classical and DFT simulations for Argon, NaCl and BMIMBF4 by
using the REMatch kernel for configuration comparisons. We try to solve the problem
of having configurations that cause simulations to fail by making the Machine Learned
potential robuster using active learning and implement an active learning algorithm into
MLSuite.

7

2. Introduction

In order to create better and faster Molecular Dynamics (MD) simulations, either the
computer hardware has to improve or physicists have to come up with new clever ap-
proaches and algorithms. One direction that looks promising for these kind of advances
is the field of Machine Learning. Machine Learning (ML) is a subfield of artificial intelli-
gence. It deals with computer algorithms, that improve with the amount of learning data.
Nowadays ML can be found in many places like pattern recognition, medical diagnosis,
stock market trading, self driving cars, and many more [22]. ML has also found a way
to help the scientific process. There are parts of the scientific method like observation
and the building of hypothesis, where the amount of data can be too much to handle for
human perception alone. There ML is used for sensing in satellites, microscope imagery
in cell research and in several high data-rate instruments [21].

In physics ML is mainly used to classify data and predict properties. In experimental
particle physics the application of pattern recognition has been part of event detection
for a long time [21].

In recent years it has become popular to use ML for predicting potential energies from
Molecular Dynamics (MD) data points [3, 4, 8]. ML potentials try to fit the very high
dimensional potential energy function, that depends on all the particle coordinates. This
is done by interpolating between the data points provided in a training data set. This
process is often called training the potential. Training a potential is an initial cost, but
in return there is no need for on-the-fly energy calculations during the simulation. There
are many applications for Potential energy surfaces. In quantum chemistry they are used
for the modeling of molecules or for bigger coarse grained systems [31].

ML PES are always going to be less accurate than the function they are trying too inter-
polate. The goal is to sacrifice only a little bit of accuracy while improving the simulation
speed by a lot. If the data points are sampled from ab initio MD, then Machine Learn-
ing potentials have the ability to simulate physical systems significantly more accurately
than classical Molecular Dynamics simulations and be orders of magnitude faster than
simply running a pure ab initio MD simulation.

Despite big progress over the last 20 years ML potentials still have problems [32]. There
are issues considering the long range interactions, because the ML algorithm only con-
siders particles, that are within a certain cutoff. This can lead to incorrect predictions
of the force and of the pressure. There are also still questions on what the best way to
create training data is and how to make sure that the ML simulation avoids encounter-
ing a configuration, that it can not predict correctly. There are approaches to address

8

this like Active Learning. Here the algorithm interacts with the user to label new data
points. By choosing the right configurations the potential can be made more robust and
the resulting simulation might therefore be successful.

9

Part I.

Theory

10

3. Molecular Dynamics Simulations

3.1. Classical Molecular Dynamics Simulations

Molecular Dynamics (MD) is a method for computing properties of many body systems.
It is a method to describe the movement of atoms and molecules. The word ’Classical’ in
this context means that the trajectories of the particles are calculated by solving New-
ton’s equations of motion. There are many systems, where this is a good approximation.
Most systems, that are studied using MD consist of hundreds or thousands of particles
and are so complex that no analytical solutions to Newton’s equations can be found. MD
simulations can be viewed as a tool that can give answers to question that might be too
hard to find with an exact approach.
Before starting the simulation the system needs to be prepared, meaning the particles
need to be placed and given properties like mass and charge. Then the system is ’in-
tegrated’, meaning that the forces acting on every particle are calculated and then the
particles are moved obeying Newtons equations of motion. After enough integration steps
the system reaches an equilibrium, where the macroscopic properties fluctuate about an
average. In this state measurements can be taken. There are many reasons for why a
particle simulation might not produce the desired outcome. The system can be prepared
incorrectly, model parameters can be chosen poorly, the system can be too small or the
measurement time too short.

The most time consuming part of most classical MD simulations is the force calculation.
If we consider a system with pair-potentials and there are N particles, then there are
N · (N − 1)/2 particle interactions. The force calculation therefore scales with O(N2).
There are methods like verlet-lists [13] that improve the scaling for short range interac-
tions by making use of the fact that interactions of particles far away from each other
can be neglected. Choosing what the particle interactions look like is also one of the
most challenging parts of a classical MD simulation. Often empirical models, so called
force fields are used, in which simple mathematical models describe Van der Waals and
electrostatic interactions as well as bond and angle potentials. The force field parameters
are fit to experimental data

Once all the forces acting on the particles are calculated, the integration step can be
performed. A popular choice is to do this is the Velocity-Verlet algorithm [13]

1. Locate the particles and give them velocities

11

2. Move the particles to their new position

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
1

2
~ai(t)(∆t)

2 (3.1)

3. Calculate the intermediate velocity

~v(t+
1

2
∆t) = ~v(t) +

1

2
~a(t)∆t (3.2)

4. Compute the new acceleration ~a(t+ ∆t) from the forces resulting of the new pos-
titions ~F (~r(t+ ∆t))

5. Calculate the new velocities

~v(t+ ∆t) = ~v(t+
1

2
∆t) +

1

2
~a(t+ ∆t)∆t (3.3)

Verlet-style algorithms are therefore not the most accurate when it comes to calculating
exact trajectories. However they have little long-term drift of the energy, which makes
them valuable for equilibrium measurements. This stands in contrast to higher order
algorithms, which are more accurate in the short-term but often have energy drifts in
the long-term [13].

3.2. Ab Initio Molecular Dynamics Simulations

Despite the success of force fields, there are still many drawbacks. In standard classical
MD simulations charges are static and therefore electronic polarization effects are not
naturally included. If polarization effects want to be included, then an additional model
needs to be added and the parameters for the model need to be chosen by the user.
While some processes can be simulated this way, there are problems like lack of trans-
ferability and standardization. Also using Classical MD there is no easy way to simulate
chemistry i.e. forming and breaking of molecules; again in order to do this new models
and assumptions have to be added [30].

Choosing parameters for models is somewhat arbitrary and not directly physically moti-
vated. These problems can be avoided with ab initio molecular Dynamics (AIMD). AIMD
calculates forces from electronic structure calculations and therefore includes many-body
forces, electronic polarization and breaking and formation of bonds. While classical MD
tries to solve Newton’s equation of motion, AIMD is based on the Schrödinger equation
and uses real physical potentials [23].

The advantages and high accuracy of AIMD comes at a cost. While it is feasible for
classical MD to simulate up to millions of atoms on the timescales of nanoseconds, AIMD
is generally limited to thousands of atoms in the picoseconds range [30]. The accuracy
of AIMD depends on the electronic structure method that is used. The most popular

12

electronic structure method is density functional theory (DFT) using the Kohn-Sham
equations.

Ab initio methods consider the N nuclei described by the coordinates ~R1, ..., ~RN = ~R
with the momenta ~P1, ..., ~PN and the masses M1, ...,MN . The Ne electrons are also
considered and are described by the coordinates ~r1, ..., ~rNe = ~r and momenta ~p1, ..., ~pN .
The Hamilton operator for such a general system reads [30]

H =

N∑
I=1

~P 2
I

2MI
+

Ne∑
i=1

~p2I
2m

+
∑
i>j

e2

|~ri − ~rj |
+
∑
I>J

ZIZJe
2

|~Ri − ~Rj |
−
∑
i,I

ZIe
2

|~RI − ~ri|
+ Vext (3.4)

wherem is the mass of the electron and Z is the charge of the respective nucleus. In order
to solve the Schrödinger equation the eigenvectors and eigenvalues need to be found. In
general it is not possible to find an analytic solution because the equation is very compli-
cated. That is why approximations are made. First the Born-Oppenheimer approxima-
tion is applied, which assumes that the nucleus and electron motions are separable [30].
Several more approximations are applied like the adiabatic approximation, which assumes
that the electronic wave function adepts to a configuration of the nuclei instantaneously.
In the end, equations for the motion of the nuclei can be derived [30]

~̇RI =
~PI
MI

(3.5)

~̇PI = −∇I(ε0(~R) + VNN (~R)) (3.6)

that can be used to integrate the system, ε0(~R) is the electronic ground state energy and
VNN (~R) is the nuclei repulsion term.

3.2.1. Density Functional Theory

Density functional theory (DFT) is based on the Hohenberg-Kohn theorem, which says
that every ground state density matches exactly one potential. From this follows that
it is possible to minimize a functional ε[n] with respect to the electron density n(~r) [6].
DFT defines a set of self consistent equations, the so called Kohn-sham equations, that
must be solved [6]. Kohn-Sham DFT uses the idea of an artificial reference system of
non-interacting fictitious particles in a potential VKS(~r, ~R). The resulting ground state
energy and density is equal to the real interacting system. A set of orthonormal single
particle orbitals Ψi(~r) are introduced, the so called Kohn-Sham orbitals [30]

n(~r) =
∑
i

fi|Ψi(~r)|2 (3.7)

resulting in a particle density n(~r). fi indicate the occupation numbers of the orbitals∑
i fi = Ne. The functional has the form [30]

ε[ψi] = − ~2

2m

∑
i

fi〈ψi|∇2|ψi〉+
e2

2

∫
d~rd~r′

n(~r)n(~r′)

|~r − ~r′|
+εxc[n]+

∫
d~rn(~r)VeN (~r, ~R) (3.8)

13

where the first term describes the quantum kinetic energy, the second term describes the
Coulomb interaction, the third term is the exchange correlation energy and the fourth
term describes the interaction of the electrons with the nuclei. The Kohn-Sham potential
is described by [30]

VKS(~r, ~R) =
e2

2

∫
n(~r′)

|~r − ~r′|
d~r′ +

δεxc
δn(~r)

+ VeN (~r, ~R). (3.9)

The solution to the Kohn-sham equations [30]

HKS(Ψi(~r)) = − ~2

2m
∇2 + VKS(~r, ~R) = εiΨi(~r) (3.10)

result in the Kohn-Sham orbitals Ψi(~r) with the energies εi. The Kohn-Sham equations
are a self-consistent cycle, because the Kohn-Sham equations can be used to calculate
a new density with equation 3.7, that can then again be used to calculate new Kohn-
Sham orbitals with equation 3.10. This formalism is in principle exact, but the form of
the exchange correlation energy εxc is unknown and therefore approximations have to be
made. Local density approximation (LDA) calculates the exchange correlation energy for
a homogenous electron gas. This works well for systems like metals where there are only
small inhomogenities in the electron densitiy. But it fails for inhomogenous systems for
example molecules with hydrogen bonds. Another approach is the generalized gradient
approximation (GGA), which also takes into account the gradient of the density, making
the functional more adaptive [30].

3.3. Machine Learning Molecular Dynamics

The underlying physical laws that describe a large part of physics and chemistry have
been known for a long time. The equations resulting from these laws are often so com-
plicated that no analytic solutions can be found. It is therefore desirable to develop
methods that find approximative solutions for quantum mechanical problems, that do
not need a lot of computation. In the past years the field of Machine Learning (ML) has
been applied to find new efficient solutions. Machine Learning is part of artificial intelli-
gence and it studies computer algorithms that improve with experience. The algorithm
becomes more successful with the use of data. ML tries to extract patterns from data
and uses them to make predictions and carry out tasks [22]. A popular example to teach
the concept of ML is image recognition. In this case input data is given in the form of
pixel values and the task is to assign a label that describes the image. The ML model is
trained on pictures whose labels the algorithm knows. This is an example of Supervised
Learning, the task of learning given training input and output pairs. The unique char-
acteristic of Machine Learning is that the user ends up with an algorithm that can solve
a problem without ever needing specific programming or complete understanding of the
task [22].

14

For ML MD this technique can be applied in an analogous way. The positions of the
particles, also called configurations, can be used as input data and the corresponding
energies, forces and pressures constitute the labels. In this way the ML model can
compare unknown configurations to the ones whose energies, forces and pressures it
knows and make predictions accordingly.

The accuracy of Molecular Dynamics simulations is limited by the quality of the poten-
tial energy surface (PES). Therefore it is important to use a precise potential function
V (~r), that describes the PES. The potential V (~r) is always a function of the nucleus
coordinates. It is possible to either calculate the potential energy on the fly during the
simulation or to calculate the PES before conducting the simulation. The first approach
has the advantage that the potential energy only needs to be evaluated for points, that
are relevant for the simulation. Calculating the PES beforehand can be expensive, but
once it is done all subsequent simulations can be much faster. The most accurate way
to calculate the potential is to use ab initio methods, but this is slow and calculating
enough points to get a smooth surface is generally not feasible. Good approximations for
the PES are therefore desirable. This is where ML can be used. Function interpolation
is an area that ML has had a lot of success in [7].

There are currently two main approaches for constructing PESs with ML, nonlinear ker-
nel methods and deep neural networks. A few examples of kernel methods are nonlinear
support vector machines, kernel ridge regression and Gaussian processes. [17] Kernel
methods often apply the input output relationship directly. For instance if there are N
function values ~y at positions ~x, it is possible to make predictions using linear combina-
tions of the ~y values. Because of this kernel methods generally scale as O(N2) to O(N3)
with the input data. Neural Networks generally scale better but also need more training
data.

Gaussian Process Neural Network
Scaling with the input data O(N2) to O(N3) varies but can be fast
Scaling of the evaluation O(N2) fast, independent of N

Required amount of input data N few many
Overfitting Rare, only for very complex kernels Likely

Very high accuracy difficult easy
[17]

Running the simulations with a PES is generally orders of magnitudes faster than ab
initio methods because the expensive step of solving the Schrödinger equation becomes
redundant. Kernel methods are still generally a lot slower than classical MD because
the representations and the linear combinations need to be evaluated. The speed of NN
simulations depend on its size but are generally faster than kernel methods but slower
than classical simulations. As a summary, it can be stated that ML simulations offer a
middle ground between the very accurate but slow ab initio methods and the very fast
but inaccurate classical simulations. If the ML model constructs an accurate PES, then
a lot of time can be saved while only a little accuracy is sacrificed.

15

3.4. Material Properties

Once the MD simulation has reached an equilibrium, we can extract the material prop-
erties that we are interested in. They can be used to analyze and study the system. In
this work material properties are mainly used to compare to literature values or to com-
pare two systems with each other, thus making sure that the simulations were conducted
successfully. There are mainly two properties used, the radial distribution function to ex-
amine the structure of the simulation and the Diffusion coefficient for checking a dynamic
physical quantity.

3.4.1. Diffusion Coefficient

Diffusion happens due to thermal motion. It smooths the concentration of particles.
For example, the phenomenon can be observed when ink is dropped into water. The
ink mixes with the water until the color of the liquid is uniform. The macroscopic law
describing diffusion is called Fick’s law [13]

~j(~r, t) = −D∇c(~r, t) (3.11)

where D is the diffusion coefficient, ~j is the current density and c is the concentration
of particles. To calculate the time dependence of c, we have to consider that the total
amount of particles remains constant [13]

∂c(~r, t)

∂t
= −∇ ·~j(~r, t). (3.12)

Fick’s law 3.11 can be combined with the conservation equation 3.12 to result in the
Diffusion equation

∂c(~r, t)

∂t
= −D∇2c(~r, t). (3.13)

This equation can be solved by using the boundary condition

c(~r, 0) = δ(~r) (3.14)

resulting in a time dependent particle concentration [13]

c(~r, t) =
1

(4πDt)
3
2

exp

(
− r2

4Dt

)
. (3.15)

This information can now be used to compute the mean squared displacement

〈r2〉 =

∫
r2c(~r, t)d~r (3.16)

getting a final result of [13]
〈r2〉 = 6Dt. (3.17)

16

3.4.2. Radial Distribution Function

The radial distribution function g(~r) describes how the particle density varies with the
distance form a reference particle. For an ideal homogeneous gas the radial distribution
function will simply be constant g(~r) = N/V . Real fluids always have variations in the
density due to particle interactions. The radial distribution function states how likely it
is to find a particle at a specific distance compared to an ideal gas.

The radial distribution function is interesting because it can be compared to literature
values that are the result of X-ray scattering or neutron scattering experiments. g(~r) also
plays an important role in liquid state theory and scattering experiments and simulations
therefore can be used to assess them. Calculating g(~r) in a simulation is straight forward,
because the exact positions of all the particles are known.

17

4. Classical Potentials

4.1. Born-Mayer-Huggins-Tosi-Fumi Potential

The Born-Mayer-Huggins-Tosi-Fumi (BMHTF) Potential describes the interactions of
NaCl-type alkali halides [29]

Vαβ(r) = Aαβ exp

(
σαβ − r
ραβ

)
−
Cαβ
r6

+
Dαβ

r8
for r < rc (4.1)

where σ is interaction dependent length parameter, ρ is an ionic-pair dependent length
parameter and rc is the cutoff. The first term describes the short-range Pauli repulsion,
the second term represents the induced dipole-dipole van der Waals interaction and the
last term describes the induced dipole-quadrupole interaction [33]. The NaCl lammps
simulation use the following parameters [33]

A (eV) ρ (Å) σ (Å) C (eV ·Å6) D (eV ·Å8)
Na-Na 424.097 0.317 0 1.05 0.499
Na-Cl 1256.31 0.317 0 7.0 8.676
Cl-Cl 3488.998 0.317 0 72.5 145.427

4.2. Coulomb and Wolf Potential

Coulomb’s law describes the force acting between two stationary charged particles

~F1 =
1

4πε0

Q1Q2

r212

~̂r12 (4.2)

with the chargesQ1, Q2 and the vacuum permittivity ε0. In a MD simulation the coulomb
forces between all particles and image particles are summed up. This is often done using a
pppm algorithm, which sums up the long range contributions using a Fourier sum.

The Wolf potential sums up the coulomb contributions via the Wolf sum:

Ei =
1

2

∑
i 6=j

qiqjerfc(αrij)

rij
+

1

2

∑
j 6=i

qiqjerf(αrij)

rij
r < rcut (4.3)

18

the interactions are only computed for a radius smaller than the cutoff radius rcut. erf
and erfc are the error function and the complementary error function and α is a damp-
ing parameter. The Wolf potential is essentially a range-limited, spherically-truncated,
charge-neutralized, shifted and pairwise 1/r summation.

19

5. Gaussian Approximation Potentials

5.1. Gaussian Processes

A Gaussian process generates data, that can be described by a multivariate Gaussian dis-
tribution. A multivariate Gaussian distribution is a generalization of the one dimensional
normal distribution. Multivariate Gaussian distributions N(µ, σ) are characterized by
the k-dimensional mean vector µ and the k×k covariance Matrix Σk

f ~X(x1,, xk) =
exp(−1

2(~x− ~µ)TΣ−1(~x− ~µ))√
(2π)k|Σ|

. (5.1)

If there are n points in a dataset ~y = y1, y2,, yn, then this set can be imagined be-
ing generated from some n-variant Gaussian distribution. This explains why Gaussian
Processes (GP) can be used in so many different places. The covariance function, that
constructs the covariance matrix can be chosen. A popular choice is the squared expo-
nential [11]

k(~x, ~x′) = σ2f exp

(
−(~x− ~x′)2

2l2

)
. (5.2)

The maximum and the width are described by the hyper-parameters σf and l, that can
also be chosen. The covariance function has the role of a similarity measure between
two input points. For instance, using the the squared exponential, two vectors have a
large covariance if they are placed closely together, meaning the distance between them
is small. The data ~y is often noisy, which needs to considered in the GP. This is done by
adding a Gaussian with a standard deviation σn to the covariance matrix [11]

K =


k(~x1, ~x1) + σ2n k(~x1, ~x2) · · · k(~x1, ~xk)
k(~x2, ~x1) k(~x2, ~x2) + σ2n · · · k(~x2, ~xk)

...
...

. . .
...

k(~xk, ~x1) k(~xk, ~x2) · · · k(~xk, ~xk) + σ2n

 . (5.3)

5.2. Gaussian Process Regression

Regression is the process for estimating the relationship between a dependent variable
and one or more independent variables. Regression is used to predict the values of a

20

function given input data. The most well known form of regression is linear regression,
where a line y = a · x + c is found that best fits the data. Gaussian Process Regression
(GPR) is a more general approach that does not assume a concrete functional form. This
is one of the main strength of GPRs compared to other fitting methods, as in a lot of
cases there is no way to find a functional form. We need to define two more matrices [11]
for the GPR

K∗ = [k(x∗, x1), k(x∗, x2),, k(x∗, xk)] (5.4)
K∗∗ = k(x∗, x∗) (5.5)

where x∗ is the target point we want to make the prediction for. The basic assumption of
GPR is that the data can be viewed as a sample from a multivariate Gaussian distribution,
it holds

(
~y
y∗

)
∼ N

(
0,

(
K KT

∗
K∗ K∗∗

))
. (5.6)

We want to know the conditional probability p(y∗|~y), which means that knowing the data
how probable is a certain prediction for the point y∗. The probability is described by a
Gaussian distribution

y∗|~y ∼ N(K∗K
−1~y,K∗∗ −K∗K−1KT

∗) (5.7)

where the best prediction for y∗ is given by the mean of this distribution [11]

y∗ = K∗K
−1~y. (5.8)

For many ML methods it is quite difficult to come up with estimates for the error of the
predictions. An advantage of GPRs is that an error estimate is built into the method.
The uncertainty for the predictions is given by the variance

var(y∗) = K∗∗ −K∗K−1KT
∗ . (5.9)

5.3. An Illustration

In Machine Learning Molecular Dynamics, Gaussian Processes are used to fit the very
high dimensional potential energy function that depends on the coordinates of every
particle in the system. For the purpose of better understanding this process it is helpful
to look at a simpler one dimensional example. We want to use GPR to estimate the
value of the point x=5.6 in figure 5.1 (a). The data points are created using a polynomial
20x− 1.4x2 + 0.025x3. In this case it makes sense to use the squared exponential kernel

21

introduced in equation 5.2. The squared exponential gives points with a similar x-value
a lot of weight and the target point will therefore have a similar y-value to the points
around it. This is desirable for a continuous function. There are 30 observations at the
positions

~x = (0, 1.2, 2.4, 3.6....) (5.10)

and σn = 16 is given by the error bars. In Python, data points can easily be created
using numpy.

import numpy as np
import matp lo t l i b . pyplot as p l t
x_array = np . l i n s p a c e (0 , 35 , 30)

de f test_polynom (x) :
r e turn 20 ∗ x − 1 .4 ∗ x∗∗2 + 0.025 ∗ x∗∗3

y_array = test_polynom (x_array)

First we need to chose values for the hyper-parameters σf (sigma_ f) and l(l) of the
kernel function. The noise σn(sigma_ n) should reflect the accuracy of the data, it can
be related to size of the errorbars. The target point is located at x∗ = 5.6(x_ star).

sigma_f = 10
l = 5
sigma_n = 4
x_star = 5 .6

The next step is to compute the covariance matrix as described in equation 5.3. This is
done by computing the kernel function for every combination of data points. Points that
are on the main diagonal all have the value 116, which matches σ2n + σ2f . Points that
are not on the main diagonal are smaller than the maximum of 116, since every point is
most similar to itself.

de f kerne l_funct ion (x1 , x2) :
r e turn sigma_f ∗∗2 ∗ np . exp(−(x1 − x2) ∗∗2/(2 ∗ l ∗∗2))

de f compute_covariance_matrix (x) :
matrix = np . ones ((l en (x) , l en (x)))
f o r row in np . arange (l en (x)) :

f o r column in np . arange (l en (x)) :
matrix [row , column] = kerne l_funct ion (x [row] , x [column])

re turn matrix

de f compute_noise_matrix (x) :
r e turn np . diag (np . ones (l en (x)) ∗ sigma_n∗∗2)

covariance_matrix = compute_covariance_matrix (x_array)
noise_matrix = compute_noise_matrix (x_array)
covariance_matrix = covariance_matrix + noise_matrix
inverse_matr ix = np . l i n a l g . inv (covariance_matrix)

22

K =


116 97 89 . . .
97 116 97 . . .
...

.
...

. . . 97 116 97

. . . 89 97 116

 . (5.11)

The covariance matrix has dimensions N ·N , where N is the number of data points. The
next step is to compute K∗ and K∗∗ as described in equation 5.4 and 5.5. K∗ describes
the similarity of the target point with the data points and K∗∗ is the kernel function of
the target point with itself.

de f compute_k_star (x_star , x) :
k_star = []
f o r index in range (l en (x)) :

k_star . append (kerne l_funct ion (x_star , x [index]))
re turn np . array (k_star)

k_star = compute_k_star (x_star , x_array)
k_star_star = kerne l_funct ion (x_star , x_star)

This is all the information needed to compute the expectation value y∗ = 70.4 with
equation 5.8 and the uncertainty var(y∗) = 3.56 with equation 5.9.

y_expectation = np . dot (k_star , inverse_matr ix @ y_array)
y_uncertainty = kerne l_funct ion (x_star , x_star) − np . dot (k_star ,

inverse_matr ix @ k_star)

Function interpolation can be done by repeating the process of predicting values for target
points as depicted in Figure 5.1 (b). The predictions for 100 points are plotted and the
expectation values are enclosed by an uncertainty interval. The predictions made by the
GPR are a lot more accurate in areas where there is a high density of data points. At
the edges the predictions are off by a significant amount. This also explains why GPR is
good at interpolating but not so good at extrapolating.

23

0 5 10 15 20 25 30 35 40
x

0

20

40

60

80

y

GPR prediction
data points

(a) Prediction for a single point

0 5 10 15 20 25 30 35 40
x

0

20

40

60

80

y

GPR expecations
uncertainty
data points

(b) Interpolation and Uncertainty

Figure 5.1.: Gaussian Process Regression for a one-dimensional example. Figure (a)
shows the GPR prediction for a single point at x=5.6. Figure (b) shows
the GPR interpolation by plotting 100 predicted values. The predictions are
enclosed by the uncertainty indicated by the red lines.

24

6. Descriptors

Choosing a good representation of the input coordinates is essential for algorithms in
computational chemistry and physics [2]. They are important to identify comparable
structures for example to characterize molecules. Cartesian coordinates are a simple way
of describing the positions of atoms, but they are not useful when it comes to comparing
configurations. A rotation of the system will completely change the cartesian coordinates,
while the physics remains the same (rotational invariance).

Descriptors can be classified by two categories. Local representations describe atomic
neighborhoods, only a part of the system. Global representations describe the whole
system. Some local descriptors include Smooth Overlap of Atomic Positions (SOAP) [3],
Symmetry Functions (SF) [5], Moment Tensor Potentials [25] and the Bispectrum [19].
Local descriptors are fit for calculating local properties such as forces or nuclear magnetic
resonance shifts [19]. Global properties can also be approximated with local descriptors
by summing over atomic contributions. For local descriptors it does not matter whether
the system is finite or periodic. Some global representations include the Coulomb Matrix
[26], histograms of distances, angles and dihedral angles [12] and the Many Body Tensor
Representation [16]. Global descriptors are fit for calculating global properties like the
energy, band gap and the polarizability tensor. Many systems are periodic and therefore
infinitely large. Global descriptors therefore need to be adapted for the application to
these systems.

Descriptors, also called representations, are a transformation of the input coordinates.
Typically they transform information in the form of cartesian coordinates into a form
that is rotationally, translationally and reflection invariant. Atoms of the same kind
can also be exchanged without changing the representation, this also called permuta-
tional invariance. Ideally a descriptor is also unique, meaning the descriptor describes
a single configuration and a configuration has only one corresponding descriptor [15].
Additionally the descriptor should also be continuous, meaning that small changes in the
configuration lead to small changes in the descriptor, and computationally efficient [15].
Discontinuities are not in line with the assumption, that we want to find the least complex
function fitting the data [19].

6.1. Smooth Overlap of Atomic Positions

The Smooth Overlap of Atomic Positions (SOAP) is a descriptor that can be used to
describe local environments within a configuration. It first places a sum of Gaussian

25

distributions and then expands them using spherical harmonics. The Gaussians are
centered at the locations where atoms are placed

ρZ(~r) =

Z∑
i

exp

(
−1

2σ2
| ~r − ~R |

)
. (6.1)

The sum runs over every atom with the same atomic number Z to construct a density
for every element. The model can be adapted by changing the hyperparameter σ. By
setting the origin to ~r = ~0, the densities can be expanded using orthonormal radial basis
functions gn and spherical harmonics Ylm [15]

ρZ(~r) =
∑
nlm

cZnlmgn(r)Ylm(Θ,Φ) (6.2)

where the coefficients are given by

cZnlm =

∫ ∫ ∫
R3

gn(~r)Ylm(Θ,Φ)ρZ(~r)dV. (6.3)

The coefficients are used to compute the power spectrum, which is rotationally invariant
and is the final result [15]

pZZ
′

nn′l = π

√
8

2l + 1

∑
m

(
cZ1
nlm

)∗
cZ2
n′lm. (6.4)

The similarity of two configuration in the SOAP representation are calculated using the
kernel [2]

kSOAP (i, j) =
∑

pinn′l · p
j
nn′l (6.5)

which is simply the dot product of the power spectrum. So in the SOAP representation
comparing the similarity of two local environments is simple and inexpensive.

6.2. Atom Centered Symmetry Functions

Atom centered symmetry functions (ACSFs) were introduced to read position information
into NNs. ACSFs make use of the cutoff function [5]

fc(Rij) =

{
0.5 cos

(
πRij

Rc

)
+ 1 forRij < Rc

0 forRij > Rc
(6.6)

that goes to zero when the distance Rij between the particles i and j approaches the
cutoff radius Rc. The first derivative of the cutoff function also goes to zero while the

26

second derivative does not. By choosing the cutoff radius to be sufficiently large, the
discontinuity in the second derivative becomes small. The symmetry functions used
consist of two body so called radial terms and three body so called angular terms. There
are several options for symmetry functions for the radial part including [5].

G1
i =

∑
j

fc(Rij), (6.7)

G2
i =

∑
j

exp(−η(Rij −Rs)2) · fc(Rij), (6.8)

and
G3
i =

∑
j

cos(κRij) · fc(Rij). (6.9)

The first function G1
i is the sum of all cutoff functions of the surrounding particles. The

second function G2
i is the sum of the cutoff functions multiplied by a gaussian with the

parameter η and Rs. By changing the parameter Rs, it is possible to pick out rings of
different radii around the center particle. The function therefore contains information
about how many particles are at range Rs away from the center particle. To include
some information about the angular distributions, the three body functions [5]

G4
i = 21−γ

∑
j,k 6=i

(1+λ cos Θijk)
γ ·exp(−η(R2

ij+R
2
ik+R2

jk))·fc(Rij)·fc(Rik)·fc(Rjk) (6.10)

and

G5
i = 21−γ

∑
j,k 6=i

(1 + λ cos Θijk)
γ · exp(−η(R2

ij +R2
ik)) · fc(Rij) · fc(Rik) (6.11)

are used. The angular part has to be symmetric for an angle of Θijk = 180◦. The angular
resolution can be varied using the γ parameter. High γ values result in fewer nonzero
symmetry functions. It is therefore possible to include information for all different angles
by including many symmetry functions with different γ values.

6.3. Coulomb Matrix

Another way to describe the environment is the Coulomb Matrix [26]

MIJ =

{
0.5Z2.4

I forI = J
ZIZJ

| ~RI− ~RJ |
forI 6= J

(6.12)

where Z is the atomic number and |~RI − ~RJ | is the euclidean distance. The diagonal
elements are the result of a polynomial fit of atomic energies to the nuclear charge. The

27

off diagonal elements take the shape of a Coulomb repulsion term. The dissimilarity
measure is included by taking the euclidean distance

d(M,M′) =

√∑
I

|ε− ε′|2 (6.13)

of the eigenvalues ε.

6.4. Software Implementation using QUIP and GAP

Gaussian Approximation Potentials (GAP) is a software package that uses GPR to fit
Potential Energy Surfaces (PES). GAP provides over 20 different descriptors [3] and
covariance functions. The GAP framework is embedded in the QUIP package that can
be downloaded from Github https://github.com/libAtoms/QUIP. QUIP is a molecular
simulation code, that is written in FORTRAN. It has interfaces with Python, LAMMPS,
CP2K and ASE.

There are many parameters that have to be defined before GAP can fit a model. In this
thesis GAP was used with the SOAP and the distance_2b descriptor. The parameters
are varied depending on the desired ML Model. An example for the parameters used to
create a working NaCl potential is given below.

" soap" : {
"n" : 5 ,
" l " : 4 ,
"atom_sigma" : 1 ,
" zeta " : 4 . 0 ,
" c u t o f f " : 9 . 0 ,
" de l t a " : 1 . 0 ,
" covariance_type " : "dot_product" ,
"n_sparse" : 500 ,
" sparse_method" : "CUR_POINTS" ,
" add_species " : "True"

} ,
" distance_2b" : {

" c u t o f f " : 9 . 0 ,
" covariance_type " : "ard_se" ,
" de l t a " : 0 . 1 ,
" sparse_method" : "CUR_POINTS" ,
" add_species " : "True" ,
"n_sparse" : 100 ,

}

The SOAP parameters "n" and "l" are the number of radial and angular basis functions,
"atom_sigma" is the smearing width of the atom density as described in equation 6.1,
"delta" is the scaling per descriptor, "sparse_method" describes the sampling of the
representative points, "n_sparse" gives the amount of representative points and "cutoff"
is the distance cutoff of the local environment.

28

https://github.com/libAtoms/QUIP

7. Descriptor Metrics

The field of computer simulations is becoming more and more complex, involving more
data and processing power. Therefore, it is also more and more important to develop
tools which help characterize and classify data and make things less confusing. One
way to do this, is to introduce a metric. A metric, also called distance function, is a
function that returns a distance between two elements of a set. The elements can have
arbitrary dimensions while the distance is always a scalar value. A metric therefore
extracts information out of something complex and displays it in a simple way. A metric
has to satisfy three conditions

d(x, y) = 0⇔ x = y (7.1)
d(x, y) = d(y, x) (7.2)
d(x, y) ≤ d(x, z) + d(z, y) (7.3)

the identity of indiscernibles, symmetry and the triangle inequality. In the case of ML
MD a metric would be useful if it could compute the distance between configurations
and in this way serve as a sort of dissimilarity measure. The most common metric used
for this purpose is the root mean square displacement, which computes the Euclidean
distance of cartesian coordinates. In recent years a couple of representations have been
introduced that contain structural information in a form that already include physical
invariances and are therefore better suited than plain cartesian coordinates. It seems
logical to base these metrics on one of those new representations, that were developed
to compute dissimilarities between atomic environments. The challenge therefore is to
find a method that extends the comparisons of atomic environments to comparisons of
configurations. Implementations of metrics, that are based on the SOAP descriptor are
contained in the DScribe package [15]. The distance between two local environments i,
and j can be defined as

d(i, j) =
√

2− 2kSOAP (i, j) (7.4)

where kSOAP (i, j) is the similarity kernel from equation (6.5). This metric is a reduction
of two very high dimensional elements, that describe the positions of many particles to
a single dimension.

Given two configurations A and B with the same amount of N atoms, it is possible
two compute a (N × N) covariance matrix, that contains the similarity measure of all
possible combinations of atomic environments of the two configurations. A straight

29

forward approach is the Average Structural kernel [9] that compares the average
environment of configuration A with the average environment of configuration B.

K(A,B) =

(
1

N

∑
i

p(iA)

)
·

 1

N

∑
j

p(jB)

 . (7.5)

This is an inexpensive method to compare the similarity of two configurations. It is
positive-definite, since it is based on a scalar product. Now a metric for configurations can
be introduced that looks very similar to the SOAP metric for local environments

D(A,B) =

√
2− 2K(A,B). (7.6)

By averaging all the local environments a lot of information is lost. It can be the case
that two structures appear to be the same, because their differences average out. It is
therefore not a very sensitive metric.

It is also possible to try and find the best matching local environments [9] with the Best
Match Kernel

K̂(A,B) =
1

N
maxπ

∑
i

Ciπi(A,B). (7.7)

The resulting distance has the properties of a metric but is not guaranteed to be positive
definite and possesses discontinuous derivatives. These problems can be avoided using
the Regularized entropy match kernel (REMatch kernel). The REMatch kernel
states the best match problem in an alternative form

K̂(A,B) = max
P∈U(N,N)

∑
ij

Cij(A,B)Pij (7.8)

where P ∈ U(N,N) are the set of N×N matrices, where all the elements of each row and
column sum up to 1/N meaning

∑
i Pij =

∑
j Pij = 1

N . In practice a slightly different
problem [9]

Kγ(A,B) = (Tr)PγC(A,B) (7.9)

argmin
P∈U(N,N)

∑
ij

Pij(1− Cij + γlnPij) (7.10)

is solved due to efficiency. Kγ can be solved using the sinkhorn algortihm [9]. It can be
shown that for γ → 0 the REMatch kernel goes to Kγ(A,B)→ K̂(A,B) and for γ →∞
the REMatch kernel goes to Kγ(A,B)→ K(A,B).

30

Part II.

Results

31

8. Introduction

8.1. Problem

Examining NPT simulations with Machine Learning Potentials is something that has
not received a lot of attention yet. It is known that these simulations often times fail.
A common observation is that the volume of the system keeps increasing as soon as
the simulation is started. The expansion of the simulation box never stops until the
simulation is entirely unphysical. It is as interesting as it would be useful to understand
why this process is happening and what the cause is. The name of this thesis "Identifying
Failures in Machine Learning Potentials" refers to this problem and understanding it is
the first step.

8.2. Investigation Procedure

The idea is now to investigate different effects that could be responsible for the failure
of ML NPT simulations. The first step consists of examining the influence of long range
interactions. Then a look is taken at how accurate the ML potential needs to be. Related
to that, it is examined what the influence of training the potential on different physical
quantities has. Then we examine what conditions the training data needs to satisfy.

In order to investigate the different effects, we need a test system. The test system should
avoid unnecessary physical difficulties. This will make it easy to understand what exactly
went right or wrong. For this reason molten NaCl is chosen. It is a system that is well
studied in simulations and experiments and there are accurate force fields available. This
will make comparisons of the ML simulations to non ML simulations and experiments
easy and clear.

32

Figure 8.1.: Snapshot of a NaCl simulation using Lammps.

The goal of this thesis is to promote the understanding of ML potentials and simulations.
It is therefore not necessary to use DFT data to construct very accurate potentials. For
the most part fitting the ML model to classical MD data will be sufficient. This makes
the generation of training data a lot faster and more adaptable. A dataset of NaCl
configurations is created by running a Lammps [24] classical MD simulation using the
Born-Mayer-Huggins-Tosi-Fumi potential. The training data is created by sampling the
dataset uniformly in energy.

Gaussian Process Regression is chosen as the ML method and the Gaussian Approxi-
mation Potential (GAP) implementation is used [3]. GAP is a codebase that is able to
approximate Potential Energy Surfaces (PES) from training configurations. The result-
ing potential is saved and is used as a plugin for Lammps.

33

9. Long Range Interactions

It is well known that long range interactions can create problems for ML potentials [32].
Every descriptor takes only particle positions into account that are within the cutoff
radius the so called local environment. Particles outside of the cutoff radius therefore do
not play a role for the prediction of the energy, forces and pressure by the ML algorithm.
As a result, long range interactions are not explicitly considered in the ML potential. But
long range interactions play an important role in DFT simulations. Different methods
have been proposed to solve this problem. One way is to separate the many body
interactions and the electrostatic contribution, which are always long range. Another
approach is to include long range functionals in addition to the short range ML prediction
[32]. In regards to running NPT simulations, these missing long range contribution could
potentially cause significant errors in the prediction of the pressure, which therefore could
lead to an incorrect size of the simulation box.

Figure 9.1.: Depiction of the cutoff radius.

The effects of long range interactions on ML potentials are investigated by setting up two
systems with different particle interactions. The workflow is depicted in Figure 9.2. Both
systems consist of 100 Na and 100 Cl atoms interacting via the Born-Mayer-Huggins-
Tosi-Fumi (BMHTF) potential [29]. The BMHTF is an empirical potential for alkali
halides (section 4.1). On top of that either a Coulomb potential with unlimited range or

34

a Wolf potential with a cutoff range is added, as described in section 4.2. Both systems
are simulated using Classical MD and the resulting trajectories are used as training data
for the GAP ML method. The cutoff radius of the descriptor is set to the cutoff radius of
the Wolf potential. Particles that are outside this radius therefore do not interact with
the central particle and thus do not need to be considered when predicting the force on
the central particle. The comparison of the predicted energy values with the MD energy
values on a validation data set is depicted in figure 9.3. The ML prediction for the Wolf
potential is very precise, while the prediction for the Coulomb potential has significant
fluctuations. It looks like the long range interactions introduce noise.

By running an NPT simulation using the Wolf system, one can test if the noise is causing
problems to the point where a NPT simulation fails. The Wolf system also fails in the
same way with an always expanding box size. Getting rid of the long range interactions
therefore does not reliably solve the NPT problem. This is the expected result when
considering that an expansion of the box is the result of pressure that is systematically too
high. Noise sometimes underpredicts and sometimes overpredicts the pressure. The mean
influence of the long range interactions is learned correctly by the ML potential.

Investigate Long Range Interactions

Run a simulation with

unlimited potential

(Coulomb)

Run a simulation with

limited potential

(Wolf)

Train a potential on

the MD data

Train a potential on

the MD data

Run a ML simulation Run a ML simulation

Test the ML potential

using the validation

data set

Test the ML potential

using the validation

data set

Figure 9.2.: Workflow for investigating the influence of long range interactions.

35

3.68 3.67 3.66 3.65 3.64 3.63 3.62 3.61 3.60
Energy (meV/atom)

3.68

3.67

3.66

3.65

3.64

3.63

3.62

3.61

3.60

En
er

gy
 (m

eV
/a

to
m

)

(a) Coulomb potential

3.67 3.66 3.65 3.64 3.63 3.62 3.61 3.60
Energy (meV/atom)

3.67

3.66

3.65

3.64

3.63

3.62

3.61

3.60
En

er
gy

 (m
eV

/a
to

m
)

(b) Wolf potential

Figure 9.3.: Comparison of the simulated MD energy to the predicted ML energy for the
Wolf and the Coulomb potential.

36

10. Accuracy of the Fitting Procedure

It is possible that the ML potential is just generally too inaccurate, making it very
likely to fail. In order to rule out this possibility we tried taking steps to create a less
noisy potential. For the sake of this discussion, a noisy potential is defined as a ML
potential whose predictions significantly differ from the validation data. Because it is
easier, we first examine how to create a less noisy NVT potential and then the NPT case
is studied.

10.1. Investigating Descriptors

GAP allows the use of several descriptors at once. A series of tests is conducted which
compare the predictions of potentials that are trained using only soap and potentials that
are trained using soap and distance_2b. One of these comparisons can be seen in Figure
10.1. The parameters for both potentials are exactly the same except for the descriptor
values. The potential that was trained on soap and distance_2b is significantly more
accurate than the one only trained on soap. This is representative for all the comparisons
made with varying cutoff radii.

10.2. Cutoff variation

In order to understand how an NPT capable ML potential can be created, first we need
to investigate the simpler NVT case. For that we need to understand what information
the potential has to be trained on. A test is conducted where the GAP potential is
trained on energies and forces for different values of the cutoff parameter. The result
is depicted in Figure 10.4 . The predicted virial and therefore also pressure for some
cutoff values is systematically too high, while it is systematically too low for others. The
information encoded in the energy and force values is therefore not enough to predict the
virial pressure reliably for the NaCl system. Since NaCl is a particularly simple system
it is to be expected that training on energies and forces only is generally not enough to
predict an accurate pressure in an NVT simulation. It is therefore necessary to train
on data that contains information about the pressure directly. For GAP potentials it is
subsequently necessary to train on virials.

37

736 734 732 730 728 726 724 722 720
Energy (eV)

736

734

732

730

728

726

724

722

720

En
er

gy
 (e

V)

DFT Energy
GAP Energy

(a) Only SOAP

737.5 735.0 732.5 730.0 727.5 725.0 722.5 720.0
Energy (eV)

737.5

735.0

732.5

730.0

727.5

725.0

722.5

720.0

En
er

gy
 (e

V)

DFT Energy
GAP Energy

(b) SOAP and distance_2b

Figure 10.1.: Comparing the energy predictions of a potential that was trained using
SOAP and a potential that was trained using SOAP and distance_2b.

10.2.1. Structure and Dynamics

GAP Potentials that are trained on energies and forces are not sufficient to predict
the pressure accurately in an NVT simulation. But they are capable of predicting the
structure and the diffusion accurately. The rdfs of the training simulation run and the
respective ML simulation run are depicted in figure 10.2. The rdfs look very similar.
The pressure is computed by summing the kinetic term, that depends on the tempera-
ture

P =
NkBT

V
+

∑
i ~ri · ~Fi
3V

(10.1)

and the virial term that depends on the forces and positions. The mean of the kinetic
term stays the same throughout the simulation, because the thermostat is active. The
positions of the particles should be very similar in both simulation runs, because the rdfs
look very similar. The forces vary a bit depending on how good the potential is but the
mean should be the same. As a conclusion one can say that seemingly small differences
in the rdfs and forces can lead to significantly different pressures. That also means that
just looking at rdfs and diffusion coefficients is not enough to asses whether a potential
gets the pressure correctly and therefore definitely not enough to assess whether it is
NPT capable.

10.3. Training only on virials

The time it takes to create a GAP potential depends on the amount of descriptors
characterizing a configuration. For the calculation of the GP the covariance matrix K
needs to be calculated and inverted. This process requires a lot of time and computer

38

0 2 4 6 8 10
r [Å]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

g α
β(
r)

ML Cl-Cl
Classic Cl-Cl

(a) Cl-Cl

0 2 4 6 8 10
r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g α
β(
r)

ML Na-Cl
Classic Na-Cl

(b) Na-Cl

0 2 4 6 8 10
r [Å]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

g α
β(
r)

ML Na-Na
Classic Na-Na

(c) Na-Na

Figure 10.2.: Comparison of the rdfs of a classical MD simulation and a ML simulation
that was trained on energies and forces with a cutoff of 5.

39

0 5 10 15 20 25 30 35 40
time [ps]

0

1

2

3

4

5
m

sd
 [m

2]
1e−19

Na Classic
Na ML

(a) Na

0 5 10 15 20 25 30 35 40
time [ps]

0

1

2

3

4

m
sd

 [m
2]

1e−19
Cl Classic
Cl ML

(b) Cl

Figure 10.3.: Comparing the mean squared displacement of a classical simulation and a
ML simulation that was trained on energy and forces with a cutoff of 10.
The resulting Diffusion coefficients are Na ML D = 1.239× 10−8 m2/s, Na
classic D = 1.23× 10−8 m2/s, Cl ML D = 1.115× 10−8 m2/s, Cl classic
D = 1.159× 10−8 m2/s.

memory. It is common to run out of memory when trying to create a GAP potential on
a system with 200 atoms with more than 500 training configurations on a computer with
126 GB of memory. It would therefore be valuable to know how many descriptors are
needed in order to create a sufficiently good potential. For this test series the potential
is only trained on virials, where

virial = V · P (10.2)

and P is the pressure tensor. The results of the training are depicted in figure 10.5. The
virials are predicted accurately by the GAP potential. The forces are noisy. To see if
that has an effect on the dynamics, a four step process is conducted. First the training
data is generated using a classical MD simulation. Then the potential is trained using
the GAP framework. Subsequently a simulation is done using the ML potential. Finally
a rerun is performed, that uses the trajectory calculated by the ML run, but the forces,
energies and pressures are calculated with the classical MD potential. This way it can
be tested, if the inaccuracy of the forces lead to new unknown configurations, that the
ML potential can not predict. The average pressure of the different runs is depicted in
table 10.1. The pressure of the training run is very close to the pressure of the ML run.
When comparing that to the pressure from the rerun, it becomes obvious that the ML
potential is very inaccurate and that the configurations explored in the ML run are very
different from the configurations in the training run. This suggests that the inaccurate
forces really do lead to new areas of the configuration space. It looks like training only
on virials is not sufficient to get good pressure predictions. Predictions for the energy
and forces are expectedly even worse.

40

20 10 0 10 20 30
Virial [eV]

20

10

0

10

20

30

40

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(a) Cutoff of 5

10 0 10 20 30 40
Virial [eV]

20

10

0

10

20

30

40

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(b) Cutoff of 6

10 0 10 20 30 40
Virial [eV]

10

0

10

20

30

40

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(c) Cutoff of 7

10 0 10 20 30 40
Virial [eV]

20

10

0

10

20

30

40
Vi

ria
l [

eV
]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(d) Cutoff of 9

20 10 0 10 20 30 40
Virial [eV]

30

20

10

0

10

20

30

40

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(e) Cutoff of 10

Figure 10.4.: Comparisons of the virial predictions of potentials that are trained on energy
and forces with a varying cutoff parameter.

41

6 4 2 0 2 4
Force (eV/Å)

6

4

2

0

2

4

Fo
rc

e
(e

V/
Å)

Simulated Force x
Predicted Force x by GAP
Simulated Force y
Predicted Force y by GAP
Simulated Force z
Predicted Force z by GAP

(a) Forces

40 30 20 10 0 10 20
Virial [eV]

40

30

20

10

0

10

20

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(b) Virials

Figure 10.5.: Results of a potential that is only trained on virials. Comparison of the
predicted virials and forces with the simulated virials and forces.

pressure training run pressure ML run pressure rerun
2610 atm. 2622 atm. 3719 atm.

Table 10.1.: average pressure of the training run, ML run and rerun.

10.4. Creating a good NVT potential

The next step is trying to create a NVT potential that can predict energies, forces and
pressures accurately. Potentials that are only trained on one or two observables can not
reliably reproduce them as shown in previous sections. We test how training on all three
observables effects the ML potential. The comparisons between simulated properties
from the training run with the predicted properties from the ML potential are shown in
Figure 10.6. The energies, forces and virials are all predicted accurately on the validation
set. The virials are not predicted as accurately as the potential, that was only trained
on virials (Figure 10.5). But in return the forces and energies are predicted a lot more
accurately. The same procedure as in the previous Section 10.3 is conducted. First, a
training run is used to generate data and then the ML run and rerun are simulated. The
average pressures are depicted in table 10.2. The pressure in the training run and the ML
run are again similar, the average pressure of the rerun differs a bit (17 % deviation) but
is significantly closer than when trained only on virials (42 % deviation). This suggests
that the ML simulation still explores new configurations that were not in the training
data. The ML potential predicts the pressures for these configurations inaccurately. The
fact that the pressure deviation is smaller compared to the potential that was only trained
on virials suggests that this effect is reduced by being able to predict the forces more
accurately. The potential could probably be further improved by having a data selection

42

736 734 732 730 728 726 724 722 720
Energy (eV)

736

734

732

730

728

726

724

722

720

En
er

gy
 (e

V)

DFT Energy
GAP Energy

(a) Energy

6 4 2 0 2 4
Force (eV/Å)

6

4

2

0

2

4

Fo
rc

e
(e

V/
Å)

Simulated Force x
Predicted Force x by GAP
Simulated Force y
Predicted Force y by GAP
Simulated Force z
Predicted Force z by GAP

(b) Forces

30 20 10 0 10 20
Virial [eV]

30

20

10

0

10

20

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(c) Virials

Figure 10.6.: Comparison of the predicted observables with the simulated ones. The ML
potential is trained on energies, forces and virials.

method that includes some of these unknown configurations in the training data.

pressure training run pressure ML run pressure rerun
2610 atm. 2556 ± 54 atm. 3060 ± 55 atm.

Table 10.2.: Average pressure of the training run, ML run and rerun. The potential is
trained on energies, forces and virials.

10.5. Running NPT simulations

Now that it has been established how to create a potential that can predict the structure,
dynamics, energies, forces and most importantly pressures sufficiently accurate; a closer

43

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
time [ns]

0

100000

200000

300000

400000

500000

vo
lu

m
e

[Å
3]

volume
initial volume 10

Figure 10.7.: Volume of the simulation box in dependence of time. The potential worked
well for a NVT simulation, but for a NPT simulation it fails.

look can be taken at creating a NPT capable potential. The next step is to try whether
the best NVT potential that was created for the previous tests is capable of running an
NPT simulation. The time dependent volume of an NPT simulation is depicted in figure
10.7. From the start the volume increases and quickly surpasses ten times its initial value
(0.0035 ns). At this point the simulation is surely completely unphysical and could be
stopped. This suggests that there still is a systematic problem.

10.6. Density Variation

ML potentials generally work best when the configurations in the ML run are similar to
the training configurations. The question we need to answer is how can the training data
better match the configurations that occur during the ML run? So far all the training
data has been generated by a single NVT simulation. In an NPT simulation the box
size changes constantly. It seems reasonable that the training data should reflect this
fact somehow. The simplest approach is to produce the training data using an NPT
simulation. For small particle numbers NPT simulations have huge fluctuations, which
causes problems for ML. This is why five NVT simulations with different box sizes are
used to generate the training data. The box sizes are chosen in a way that the system
wants to contract for the big box sizes and the system wants to expand for small box
sizes. The ML algorithm should therefore be able to learn that there is an equilibrium
and not continuously expand any more.

44

Energy

Pr
ob

ab
ilit

y
De

ns
ity

T1
sample points
T2
sample points
T3
sample points

Figure 10.8.: Energy probability distribution in dependence of Temperature according to
equation 10.4, where T1 < T2 < T3.

10.6.1. Temperature Variation

Additionally to the density variation, the temperature can also be varied. The idea is to
sample a bigger part of the phase space therefore making the ML potential more robust.
The energy probability distribution in the canonical ensemble is given by [27]

p(E) =
Ω(E) exp(−βE)

Z
(10.3)

where E is the energy, β = 1
kBT

and Z is the partition function. This expression can be
further approximated as [27]

p(E) ≈ 1√
2πkBT 2C

exp

(
−(E − 〈H〉)2

2kBT 2C

)
(10.4)

where T is the temperature, 〈H〉 is the expectation value of the energy and C is the heat
capacity. The distributions for different Temperatures are depicted in figure 10.8.

10.6.2. Different training approaches

We conduct different training approaches and compare them. For the first one the train-
ing data is generated by five NVT simulations with box volumes of from 6000 Å3 to
9000 Å3. The equilibration box volume of the classical MD NPT simulation is 7771 Å3.

45

The temperature of training runs match the temperature of the ML run at 1400 K. The
time dependent volume of this ML approach is depicted and compared to the classical
potentials in figure 10.10. The equilibration volume of the ML simulation is matching
the value of the classical potential run, the deviation of the 200 particle runs is 1.2% and
of the 1000 particle simulations 2.8%. The ML simulations therefore are successful and
do not continuously expand.

46

740 735 730 725 720 715 710
Energy (eV)

740

735

730

725

720

715

710

En
er

gy
 (e

V)

DFT Energy
GAP Energy

(a) Energy

4 2 0 2 4
Force (eV/Å)

4

2

0

2

4

Fo
rc

e
(e

V/
Å)

Simulated Force x
Predicted Force x by GAP
Simulated Force y
Predicted Force y by GAP
Simulated Force z
Predicted Force z by GAP

(b) Forces

40 20 0 20 40
Virial [eV]

40

20

0

20

40

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(c) Virials

Figure 10.9.: Comparison of the predicted observables with the simulated ones. The ML
potential is trained on energies, forces and virials and the trainings data
set is made out of configurations of 5 different nvt simulations at different
box sizes. This potential was used to run the successful NPT simulation
depicted in figure 10.10.

47

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time [ns]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

vo
lu

m
e

[Å
3] Classical MD 1000 particles

ML MD 1000 particles
Classical MD 200 particles
ML MD 200 particles

Figure 10.10.: Time dependent volume of the classical potential runs and ML potential
runs. The training data for the ML potential was created using five NVT
simulations at different box sizes.

48

11. Encountering Problematic
Configurations

In the last chapter it was demonstrated, how a ML potential can be trained that runs
a NPT simulation successfully. The chapter started by stating the problem, that NPT
simulations expand more and more and apparently fail from the beginning. This very
much looks like there is a systemic problem with the training procedure. We then went on
to fix these systemic problems. But there is no guarantee that applying the new adapted
training procedure will lead to a working ML potential. It simply demonstrated that it
can work. There are other different problems that can occur. When training and running
different ML potentials it can happen that the simulation starts out looking stable, but
at some point it suddenly goes wrong. A case of this happening is depicted in Figure
11.1. The figure depicts the volume in dependence of time. In the beginning the volume
fluctuates around an average value as expected. After simulating about 22000 timesteps
the volume suddenly strongly increases. The potential used to run the simulation has
accurate predictions on the validation data set, as it can be seen in 11.2. It would be
useful to understand what happens during and shortly before the system explodes.

In contrast to the problems before, it seems that this is not a systemic problem. Rather
it looks like the physics is modeled accurately until the system encounters some con-
figurations, where the ML potential does not know what to do. Then the system runs
for a little longer and expands quickly. It would be really helpful to know which the
first configuration is, that causes problems. Then this configuration could be examined
and a potential could be built which understands it. This could be done for example by
adding the problematic configuration to the training data. This raises the question on
how to find the first problematic configuration. A way to find this configuration could
be to look at the physically measurable quantities and find out if any of them predict
the simulation failure. The volume in dependence of time shows approximately where
the simulation goes wrong. But due to the strong fluctuations it is fairly difficult to say
which configuration exactly is responsible for the explosion.

Another approach is to look at the temperature during the simulation. The temperature
in dependence of time is depicted in figure 11.3. The breaking step is the first configura-
tion, that exceeds 1.5 times the equilibrium volume. At that point the simulation does
not reproduce real physics any more and is way out of outside the range of the natural
fluctuations which are about 10%. The breaking step is indicated by a black vertical line.
A running average of the temperature is indicated by the orange line. The behavior of
the temperature does not show any interesting signs before the system explodes. This

49

14000 16000 18000 20000 22000 24000
number of configuration

0

2500

5000

7500

10000

12500

15000

17500

20000

vo
lu

m
e

[Å
3]

volume
1.5 ⋅ equilibrium volume

Figure 11.1.: Time dependent volume of a ML potential. The volume fluctuates around
the expected value until around 22000 configurations. Then the volume
rapidly increases making the simulation unphysical.

may be due to the thermostat which tries to keep the temperature roughly constant.
There is a spike after the system explodes, which might be due to the sudden increase in
box volume. This spike is not of interest, since it happens after the simulation failure and
therefore can not be a predictor. Closely connected to the temperature are the velocities
of the particles. Lammps calculates the temperatures using

KE =
3

2
NkBT (11.1)

where N is the number of particles, kB is the Boltzmann constant, T is the temperature
and

KE =
N∑
i=1

1

2
mv2 (11.2)

is the kinetic energy of the particles. The information about the average velocities is
therefore contained in the temperature. It could still be that there are a few particles
that show interesting behavior. For example it could be that case that some particles
reach an unusually high velocities, because the potential predicted some very high forces
incorrectly. To examine this, a series of velocity histograms was created. They compare
the velocity distributions before and after the breaking step at different times. One of
those comparisons is shown in figure 11.3 b). The figure is representative of all the com-
parisons made. The distributions have a Gaussian shape, which would be expected for
a correctly running NPT ensemble, that reproduces a Maxwell-Boltzmann distribution.
The distributions look very similar and have no unexpected statistical outliers, that could
indicate a simulation failure.

The next observable that is examined are the particle forces. A graph of the average

50

740 735 730 725 720 715 710
Energy (eV)

740

735

730

725

720

715

710

En
er

gy
 (e

V)

DFT Energy
GAP Energy

(a) Energy

4 2 0 2 4
Force (eV/Å)

4

2

0

2

4

Fo
rc

e
(e

V/
Å)

Simulated Force x
Predicted Force x by GAP
Simulated Force y
Predicted Force y by GAP
Simulated Force z
Predicted Force z by GAP

(b) Forces

40 20 0 20 40
Virial [eV]

40

20

0

20

40

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(c) Virials

Figure 11.2.: Comparison of the predicted observables with the simulated ones. The ML
potential is trained on energies, forces and virials and the trainings data
set is made out of configurations of 5 different nvt simulations at different
box sizes. This potential resulted in an unsuccessful NPT simulation as
depicted in figure 11.1.

51

force magnitude

AFM =
1

Npart

Npart∑
i=1

√
~Fi · ~Fi (11.3)

in dependence of time is depicted in figure 11.4 a). The average force magnitude fluctuates
around a constant average until the simulation breaks. After the breaking step the
average force magnitude increases significantly. This is again not very useful when looking
for a predictor of simulation failure. It would be reasonable to guess, that the simulation
fails because the ML potential predicts some forces incorrectly. There could be one or
a few particles, that experience a very high force. This would not necessarily change
the average a lot and therefore not be visible in figure 11.4 a). That is why a series of
histograms is created that compare the force distributions before and after the breaking
step. One of them is depicted in figure 11.4 b). The same Gaussian function is plotted
in both histograms for comparison. The histograms look very similar and there are no
outliers, that can be detected.

It is also possible that a sudden increase in pressure, causes the simulation to explode.
For this reason the time series for the pressure is examined as depicted in figure 11.5 a).
The pressure

P =
NkBT

V
+

Npart∑
i=1

~ri · ~Fi
3V

(11.4)

fluctuates around zero until the simulation breaks. After the breaking step the pressure
spikes and reaches a maximum. Then the pressure drops again. A similar pattern can
be observed for the virial pressure depicted in figure 11.5 b). The virial pressure is the
pressure minus the kinetic part

Pvirial =

Npart∑
i=1

~ri · ~Fi
3V

. (11.5)

The virial pressure is what is used, if it states that a ML model is trained on pressure.
This is because the kinetic energy is not interesting and only creates noise when creating
a potential.

As a summary there are no physical quantities found that can reliably predict simulation
failure. Therefore physical quantities can not be used to identify the first configuration
that the ML potential has a problem with. That is also why this problem needs to be
approached differently.

52

18000 20000 22000 24000 26000
number of configurations

1100

1200

1300

1400

1500

1600

1700

Te
m

pe
ra

tu
re

 [K
]

Temperature
average
breaking step

(a) Temperature

−30 −20 −10 0 10 20 30
0

500

1000

1500

2000 Gauss
velocities before

−30 −20 −10 0 10 20 30
velocity [Å/ps]

0

500

1000

1500

2000 Gauss
velocities after

Co
un

t

(b) Velocities

Figure 11.3.: (a) Temperature in dependence of time in a simulation that explodes. The
point where the volume becomes bigger than 1.5· the equilibrium value is
indicated by a vertical black line. (b) The distribution of velocities before
and after the simulation explodes.

20500 21000 21500 22000 22500 23000 23500 24000 24500
number of configurations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

av
er

ag
e

fo
rc

e
m

ag
ni

tu
de

(a) Average force Magnitude

−4 −2 0 2 4 6
0

1000
2000
3000
4000
5000 Gauss

forces before

−4 −2 0 2 4 6
force [eV/Å]

0
1000
2000
3000
4000
5000 Gauss

forces after

Co
un

t

(b) Forces

Figure 11.4.: (a) Average force magnitude in dependence of time in a simulation that
explodes. The point where the volume becomes bigger than 1.5· the equi-
librium value is indicated by a vertical black line. (b) The distribution of
forces before and after the simulation explodes.

53

18000 20000 22000 24000 26000
configuration number

−6000

−4000

−2000

0

2000

4000

6000

Pr
es

su
re

 [b
ar

s]

Pressure
average
breaking step

(a) Pressure

20000 21000 22000 23000 24000 25000
Configuration Number

 10000

 8000

 6000

 4000

 2000

0

2000

4000
Vi
ria
l P
re
ss
ur
e
[b
ar
s]

Virial Pressure
average
breaking step

(b) Virial Pressure

Figure 11.5.: Pressure (a) and virial pressure (b) in dependence of time. The point where
the volume becomes bigger than 1.5· the equilibrium value is indicated by
a vertical black line.

54

12. Investigation of Descriptor Space

Since simulating physical systems by solving Newton’s equation of motions takes a lot
less effort and time than solving the Schrödinger equation, the classical approach is used
when it is possible. But using the classical approach comes at a sacrifice of accuracy.
That is why most of the time ML potentials are trained on DFT data. The ML approach
tries to interpolate the potential energy surface that is given by the sampled data points.
The accuracy of the ML potential is therefore limited by the accuracy of the training
data. This means that generating precise training data is of great importance to create
reliable ML potentials. Avoiding expensive calculations while still having high accuracy
is the idea behind hybrid models, that try to combine the advantages of both the classical
and the ab initio approach. One method is the Single Point Calculator. It first samples
the configuration space using a classical simulation and then picks specific configurations
and runs DFT on them. In this way the amount of DFT computation time is greatly
reduced, while hopefully keeping the accuracy. The quality of this approach depends on
how well the classical configuration space sampling fits the DFT configuration space. It
is also important how the configurations are chosen.

The are potential problems with the Single Point Calculator method. If the classical
configuration space contains the ab initio configuration space, then a classical simulation
run can produce all the configurations that can occur in an ab initio run. But there also
will be configurations sampled that do not contribute to describing the relevant part of
the configuration space and you generally want to avoid adding these to your training
data. It is also possible that the ab initio configuration space contains the classical
configuration space. In this case it is possible to sample the subspace using classical MD.
Then some of the sampled configurations can be used as seeds for ab initio simulations
in order to add the missing parts. It is also possible that configurations generated by
the two approaches are generally different and have little overlap. In this case the there
are some configurations in the ab initio data that can not be reproduced by the classical
simulation. As a result a potential that is trained using the Single Point Calculator will
likely differ from a potential that was trained on pure ab initio data. That is why we
want to compare the configuration space of ab initio simulations with the configuration
space of classical simulations.

In this work we use the REMatch kernel as described in chapter 7, to compare configu-
rations. Now we want to find ways to use the REMatch kernel to characterize not only
configurations but the whole configuration space.

55

12.1. Systems to Study

To study the configuration space, 3 systems are picked. Each of the systems is simulated
one time using classical MD and one time using DFT. We use the same parameters like
number of atoms, length of the timestep and initial configuration for both simulations
in order to make the two runs comparable. The MD simulations are conducted with
lammps [24] while the DFT simulations are run using CP2K [18]. The atom numbers
are kept low, so that the DFT simulations are still feasible.

The first system is liquid Argon at 85 K, which is chosen because of its simplicity; it is
monoatomic and the particle interactions are rather simple. It has been demonstrated
that many properties of argon can be simulated accurately using a simple Lennard-Jones
interaction model [1]. The Argon system is simulated using 108 atoms. The Lennard
Jones parameters for the classical simulation are ε = 0.2381 kcal/mol and σ = 3.405 Å.
The potential has a cutoff of 13 Å. The box length is 17.042 Å resulting in a particle
density of ρ = 0.0218 1/Å3 and the timestep is 10 fs for 50000 integration steps. The
DFT simulation uses a refitted Perdew and Yang 86, and a Perdew, Burke and Ernzerhof
functional. To account for dispersion a Revised Vydrov-van Voorhis nonlocal van der
Waals density functional is used.

The second system is molten NaCl at 1400 K. There is plenty of experimental data
on molten NaCl. Also it consists of two different species making the structure more
complex than that of a monoatomic noble gas. Additionally the particle interaction is
more complicated, than that of Argon. Interactions have been described for the most part
using pairwise effective rigid ion or shell models giving reasonable results for structure and
dynamics [14]. The Born-Mayer-Huggins-Tosi-Fumi (BMHTF) potential is used to model
the particle interactions in the classical simulation. Additionally the PPPM algorithm
is used to calculate the electrostatic interactions. The NaCl system uses 64 atoms and
a timestep of 2 fs for 10000 integration steps and a total run time of 20 ps. The box
length is 13.1 Å resulting in a particle density of 0.0284 1/Å3. The DFT simulation also
uses a refitted Perdew and Yang 86, and a Perdew, Burke and Ernzerhof and Revised
Vydrov-van Voorhis nonlocal van der Waals density functional.

The third system is 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4). It
belongs to the group of ionic liquids, which is a salt in liquid state [10]. Sometimes ionic
liquids are also refered to as salts whose melting points is below 100◦C. In contrast to
other well extensively studied liquids like water, which consist of neutral molecules, ionic
liquids consist of ions. BMIM BF4 is a complex molecule with many H-H and C-H bonds,
that have the ability to rotate and vibrate, making it more difficult to parameterize an
emipirical potential. The system consists of 300 atoms and the box length is 14.69 Å
resulting in a particle density of 0.094 63 1/Å3. The timestep is 1 fs for 50000 integration
steps and a total run time of 50 ps. The DFT simulation uses the Becke 97 exchange
correlation functional and the Grimme D3 method for the dispersion interaction.

Several radial distribution functions comparing the classical and the DFT data for the
systems are depicted in figure 12.1. The radial distribution functions of Argon Ar-Ar

56

0 2 4 6 8
r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g α
β(
r)

DFT Ar-Ar
Classic Ar-Ar

(a) Ar

0 1 2 3 4 5 6
r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g α
β(
r)

DFT Na-Cl
Classic Na-Cl

(b) NaCl

Figure 12.1.: Comparing the radial distribution function of the classical to the DFT
simulation for a) the Argon system b) the sodium-chloride system.

look pretty similar. The first peak of the DFT rdf at r = 4 Å is slightly higher than
the peak of the classical rdf. The tails match up well. The NaCl rdfs also match well,
but the classical Na-Cl rdf is slightly shifted towards smaller radii compared to the DFT
Na-Cl rdf. This could indicate that the particle size is a little bit underestimated by the
classical model.

12.2. Comparing Trajectory

We compare the distance from the first configuration to all the other configurations of one
simulation. So we calculate a distance time series of how far the simulation moves away
from the first configuration. The time series are depicted in figure 12.2. We compare
the time series of the classical simulations with the DFT simulations for every system.
The classical series of Argon jumps from zero to a stable distance, that it fluctuates
around. This might indicate that the system stays in one part of the configuration space
for the whole simulation. The DFT series looks very similar in the beginning, but after
around 300 ns the distance starts to fluctuate around a new smaller value. This change
in the behavior might indicate that the simulation accesses a distinguishable part of the
configuration space.
The time series of NaCl are depicted in figure 12.2 b). The classical series has a jump
in the beginning and then fluctuates around a constant value. The relative fluctuations
are bigger than the ones of Argon. In contrast the DFT series increases over time and is
not stable. It might very well be the case that 14 ps are not enough to sample the DFT
configuration space adequately and more distinguishable configurations would appear, if
the simulation was run for longer. The BMIM BF4 series are depicted in figure 12.2 c).
The plots for the classical and DFT run look very different. The classical series fluctuates
around a stable value in the beginning and after around 30 ps it starts to fluctuate around

57

0 100 200 300 400 500
time [ps]

0.00

0.01

0.02

0.03

0.04

0.05
M

et
ric

 D
ist

an
ce

Classic
DFT

(a) Ar

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [ps]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
et

ric
 D

ist
an

ce

Classic
DFT

(b) NaCl

0 10 20 30 40 50
time [ps]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
et

ric
 D

ist
an

ce

Classic
DFT

(c) BMIMBF4

Figure 12.2.: Comparing the metric distance to the first configuration in dependence of
time for Ar, NaCl and BMIMBF4 using the REMatch kernel.

a new bigger distance. The distances of the DFT simulation are significantly bigger than
the classical ones. It looks like only a part of the DFT configuration space is sampled
and an even smaller part of the DFT space.

The fact that the DFT simulations look like they are too short to sample the the whole
configurations space of realistic configurations indicates why it makes sense to apply
something like a Single Point Calculator. The BMIM BF4 DFT simulations were run for
weeks. It therefore does not look like a feasible solution is to simply run the simulation
for longer. The reason why the distances of the NaCl and BMIM BF4 DFT simulations
are bigger could very well be because the potentials are more complex and can capture
behavior like rotational and vibrational degrees of freedom better. That could lead to
more complex structures, which makes the configurations more distinguishable.

58

12.3. Comparing distributions

The comparisons of the time dependent distance series discussed in the last section miss
information about the distances between any configurations that do not include the first
one. Now we take a look at the distributions of the distances. Distributions include
information about all the different combinations but do not include any information
about the time dependence. We want to compare the differences of the configuration
space between the classical and the ab initio runs. More specifically we want to find out
whether there is an equivalent match for every configuration in the data sets. First we
pick a configuration from the DFT data set and compare it to every configuration in
the classical data set. Out of all these comparisons we select the one with the smallest
distance, which corresponds to the configuration that is the most similar and add it to
the distance histogram. We do this process for every configuration in the DFT data
set. This way we have created a histogram with the distances of all the most similar
configurations between the data sets.

The histogram for Argon can be seen in figure 12.3 a). There is a high peak at small
distances and low counts at further distances. This indicates that it was possible to find
an equivalent match for almost all configurations.

The situation for NaCl is a bit more complicated and is depicted in 12.3 b). The histogram
has a wide peak at smaller distances and also smaller peaks at bigger distances. In general
the distances are much more evenly distributed than Argon. This indicates that there
are matching but also not so well matching configurations.

The histogram of BMIM BF4 has no counts at smaller distances d < 0.018. There are
a wide range of counts at medium and larger distances. This indicates that it is hard
to find equivalent matches for BMIMBF4. It is possible that the classical model can not
reproduce the molecule vibrations and rotations accurately enough.

59

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
REMatch distance

0

100

200

300

400

500

600

700

800

Co
un

t [
nu

m
be

r o
f d

ist
an

ce
s]

(a) Ar

0.005 0.010 0.015 0.020 0.025 0.030
REMatch distance

0

20

40

60

80

100

Co
un

t [
nu

m
be

r o
f d

ist
an

ce
s]

(b) NaCl

0.020 0.022 0.024 0.026 0.028 0.030
REMatch distance

0

5

10

15

20

Co
un

t [
nu

m
be

r o
f d

ist
an

ce
s]

(c) BMIMBF4

Figure 12.3.: Comparing the distribution of metric distances of Ar, NaCl and
BMIMBF4 using the REMatch kernel. The distances are measured

between configurations of the classical simulation and configurations of
the DFT data.

60

13. Implementing an Active Learner

The previous two chapters dealt with identifying and characterizing ’bad configurations’
i.e. configurations that can cause the simulation to fail. The aim of this chapter is to
implement an Active Learner into MLSuite, that is flexible, scalable and adaptable. The
goal is also to solve the problem of encountering bad configurations that lead to a failure
of the simulation, by identifying and adding them to the training data, thus creating a
more stable potential.

Active Learning is a subfield of Machine Learning where an algorithm can interact with a
user to choose and label new data points. It aims to achieve an increased data efficiency,
meaning better predictions with less training data. Active Learning is often employed
when the labeling of the data is expensive, for example in speech recognition. Here the
labeling is very time expensive and requires trained workers [28].

In this work active learning is applied to create improved Potential Energy Surfaces. The
idea is to start with an initial training data set, which is used to train a potential. Sub-
sequently this potential is used to run MD simulation steps. If the simulation encounters
a configuration that is significantly different from the training data the simulation is
stopped and this configuration is added to the training data, thus creating a new bigger
training data set. Now a new improved potential is trained and the simulation is run
again until it encounters another unknown configuration. This process can be repeated
as often as you like.

13.1. MLSuite

MLSuite is a Software package. It is build as a pipeline for the whole ML process, from
beginning to end. MLSuite is written in python and is easy to use. It aims to make every
step of the ML process available with only one line of code. It uses DVC and ZnTrack
to compute a computational graph that keeps track of the parameters and the stages
of the ML process. In order to train a ML model you need data. MLSuite contains
methods to generate data by interfacing with MD engines. The resulting data points
and labels like energies, forces and pressures are stored in an ASE [20] database. It has
been shown, that it makes a big difference which parts of a dataset are chosen as input
for the training data. For this reason MLSuite has different data selection methods like
uniform energetic, uniform force, random and uniform temporal. This allows the user to
chose the most efficient data points to train on. MLSuite provides a variety of different
models, for example there is GPR using GAP or NNs using FNET. Once the training

61

is finished it can be tested by comparing predictions of the model with data points of
the validation data set. The user has now the option to continue training using Active
Learning methods or run the model directly.

13.2. Algorithm Structure

The Algorithm consists of five different parts that are separated into classes as it is
depicted in Figure 13.1. The active learner class acts as the main class that calls methods
from the other four classes. The Active Learner Class starts the program and initializes
the ML Model Class, which uses an initial training data set to train a potential. Then the
Simulator Class is started. It reads a parameter file containing information about atoms,
positions and further simulation parameters and starts a simulation. After a fixed amount
of simulation steps, the simulation pauses. The Active Learner Class reads out the current
state of the simulation and hands the configuration over to the Configuration Compare
Class. Subsequently, the Configuration Compare Class compares the new configuration
to the the configurations in the training data set. If the new configuration is too similar
to the training data the simulation continues and runs again for a fixed amount of steps.
Again the last configuration is handed of to the Configuration Compare Class. If the
new configuration is dissimilar enough, then the configuration is handed over to the
Observable Calculator Class. The Observable Calculator Class assesses the energy and
forces of the configuration and adds it to the training data. Then the ML Model Class is
started and a new improved potential is trained. The Active Learner Class again starts
the Simulator Class and the cycle is repeated.

In this work a simulator class is used based on the Lammps simulation engine. It reads a
Lammps parameter file and sets up the simulation. The communication with MLSuite is
done using Pylammps, a package that allows the interaction of the Lammps source code
with python. Also Lammps is able to read GAP potentials using the QUIP package.
The Configuration Compare Class in this paper is based on the REMatch kernel. It
calculates the similarity between the new configuration and every configuration in the
current trainings data set. The result of a similarity calculation is a number that lies
between 0 and 1. If the configurations are the same, then the result is 1. If the config-
urations are very dissimilar then the configuration will be significantly smaller than 1.
The Rematch Compare Class compares all the similarity numbers to a by the user chosen
critical similarity number. If there is no number higher than the critical similarity, the
configuration will be added to the training set. This can be interpreted as the training
set does not contain this configuration yet.
The Observable Calculator class used in this work is also implemented using the Lammps
simulation engine. The class creates a second simulation box, that reads the current con-
figuration and places the atoms accordingly. In contrast to the simulation box of the
Simulator Class it uses a classical force field and no simulation steps are conducted. The
simulation box is merely used to calculate the energy of the whole system, the forces on
the particles and the pressure tensor. This information is added to an ASE database

62

Figure 13.1.: Programming Structure of the Active Learner. It consists of 5 Classes. The
Active Learner Class interacts with the four other Classes.

with the rest of the training data.
The ML Model class is based on GAP. It reads the training configurations from the
database and trains a potential based on parameters chosen by the user.

Separating the code into different parts has the advantage, that each part can be replaced.
For example the ML Model Class is based on GAP, but it is possible to write another
class that is based on a Neural Network and plug that into the Active Learner making the
algorithm very flexible by making use of polymorphism. In the future it would make a lot
of sense to implement another Observable Calculator Class that is based on a DFT engine
like CP2K. This would allow to create much more accurate active learning potentials,
that are physically more interesting.

An example of how the Active Learner can be used is given with the Code example below.
First mlsuite needs to be imported, then the four different classes need to be instantiated
and finally handed over to the active Learner class.

import ml su i t e as mls
from mlsu i t e . data . database import Database
from mlsu i t e . pes . t tv . t tv import TTV
from mlsu i t e . pes . models . gap import GAP
from mlsu i t e . pes . agents . s imulator_act ive import LammpsSimulator
from mlsu i t e . pes . agents . lammps_observable_evaluator import

LammpsObservableEvaluator
from mlsu i t e . pes . agents . delta_rematch import DeltaRematch

pro j e c t
p r o j e c t = mls . Pro j e c t ()

63

p r o j e c t . create_dvc_repos i tory ()
p r o j e c t . add_data (r "nacl_data . extxyz ")
p r o j e c t . bui ld_dataset (method="uniform_energy" , n_conf igurat ions=200)
p r o j e c t . bui ld_ttv (method="random" , s p l i t =[0 .5 , 0 . 0 , 0 . 5])

sp e c i e s_ in f o = { ’Na ’ : { ’ lammps_type ’ : 1 , ’ atomic_number ’ : 11} ,
’ Cl ’ : { ’ lammps_type ’ : 2 , ’ atomic_number ’ : 17}}

s imu la to r = LammpsSimulator (parameter_f i l e=’ in_star t . lmp ’ , r e s t a r t_ f i l e=’
system_data_trained . extxyz ’ , temperature=1400)

observab le_eva luator = LammpsObservableEvaluator (p o t e n t i a l_ f i l e=’
observab le_eva luator_in i t . lmp ’)

gap = GAP(n=5, l =4, c u t o f f =10, use_energy=True , use_forces=False ,
u s e_v i r i a l=Fal se)

compare_rematch = DeltaRematch (c r i t i c a l _ s im i l a r i t y =999997 , nmax=5, lmax=4,
c u t o f f =10)

p r o j e c t . per form_act ive_learning (gap , s imulator , observable_evaluator ,
compare_rematch , spec i e s_ in fo ,

comparison_step=10, max_run_iterations=50000 ,
max_new_configurations=30, i n i t i a l_ t r a i n i ng s_da ta=None)

13.3. Results

There are a couple of things, that can go wrong doing an active Learning scheme like
this. It is possible that two particles get fairly close during the simulation process of
the active learner. The ML potential might give the configuration a reasonable looking
energy, but the observable calculator will give the configuration a very high or very low
energy. Including these kinds of outliers in the training data can make the potential
worse. These configuration would never happen in a realistic simulation of course. This
problem mainly occurs when the active learning is started with a bad initial potential.
This often happens when there are not enough configurations in the initial training data
or when the potential is only trained on energies.

We test the active learner by training an NVT potential. The initial training set contains
160 configurations and to that 15 configurations are added. The potential is trained on
energies and forces. The comparison of the predicted values on the validation data set is
depicted in figure 13.2. The predictions are close to the simulated data.

A more interesting case is applying the active learner to a potential, that initially failed.
Here the active learner is applied to a potential that caused the simulation to explode.
The observables of the run agree with the expected value until a problematic configura-
tion is encountered that the ML Potential does not know. By applying active learning,
configurations like this can potentially be identified and included into the potential. The
initial NPT potential is trained on 147 configuration using energy, forces and virials and

64

737.5 735.0 732.5 730.0 727.5 725.0 722.5 720.0
Energy (eV)

737.5

735.0

732.5

730.0

727.5

725.0

722.5

720.0

En
er

gy
 (e

V)

Simulated Energy
Predicted Energy

(a) Energy

4 2 0 2 4
Force (eV/Å)

4

2

0

2

4

Fo
rc

e
(e

V/
Å)

Simulated Force x
Predicted Force x by GAP
Simulated Force y
Predicted Force y by GAP
Simulated Force z
Predicted Force z by GAP

(b) Forces

Figure 13.2.: Comparing the predictions with the validation data of a NVT ML potential,
that was trained using the active learner.

734 732 730 728 726 724 722
Energy (eV)

734

732

730

728

726

724

722

En
er

gy
 (e

V)

Simulated Energy
Predicted Energy

(a) Energy

4 2 0 2 4
Force (eV/Å)

4

2

0

2

4

Fo
rc

e
(e

V/
Å)

Simulated Force x
Predicted Force x by GAP
Simulated Force y
Predicted Force y by GAP
Simulated Force z
Predicted Force z by GAP

(b) Forces

40 30 20 10 0 10
Virial [eV]

40

30

20

10

0

10

Vi
ria

l [
eV

]

Simulated Virials xx
Predicted Virials xx by GAP
Simulated Virials yy
Predicted Virials yy by GAP
Simulated Virials zz
Predicted Virials zz by GAP

(c) Virial

Figure 13.3.: Comparing the predictions with the validation data of a NPT ML
potential, that was trained using the active learner.

the simulation exploded after about 150 000 timesteps around 0.3 ns as depicted in figure
13.4 a). Using the active learner 33 configurations are added for a total of 180 configura-
tions. The prediction for the energies, forces and virial on the validation data set can be
seen in figure 13.3. The simulation of the active learner potential does not explode as it
is depicted in 13.4 b). This indicates that the active learning process made the potential
a lot more stable. It is unclear though if this is because the configurations selected by
the active learner are selected very carefully, or if the same improvement could have been
achieved by adding configurations for example with a uniform energy method.

13.3.1. Convergence

The potential in the last section seemed to become more robust by adding more config-
urations to the training data set using the active learner. Now we want to investigate if

65

0.05 0.10 0.15 0.20 0.25 0.30
time [ns]

2000

4000

6000

8000

10000

12000

vo
lu

m
e

[Å
3]

initial potential

(a) Initial Potential

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
time [ns]

0

2000

4000

6000

8000

10000

12000

vo
lu

m
e

[Å
3]

active learning potential

(b) Active Learner Potential

Figure 13.4.: Volume in dependence of time of an NPT simulations. The initial
potential fails (a) and the improved version is successful (b).

this is reflected in the accuracy of the predictions that the potential makes. We use the
root-mean-square-error of the energy to assess the quality of the predictions

RMSD =

√∑N
i=1(ŷt − yt)2

N
(13.1)

where N is the number of values, ŷt is the correct value and yt is the predicted value. An
active learning cycle is conducted and every time the potential is retrained the energy
RMSD is computed on a validation data set. The validation data is taken from the same
MD trajectory that was also used to create the training data set for the initial potential.
The RMSD energy values in dependence of the number of added configurations is depicted
in Figure 13.5. The error fluctuates and does not converge. This indicates that the
potential does not become better at predicting the configurations in the validation data
set.

The new added configurations are not sampled with the same method that is used to cre-
ate the validation data and the resulting configurations of both methods can be generally
different. We therefore do not necessarily expect that the potential becomes better at
predicting configurations of the validation data set. Additionally the purpose of the active
learner was not to improve the predictions of configurations that are already predicted
very well, but to improve on configurations that previously would have been predicted
very poorly.

66

0 5 10 15 20 25 30
number of added configurations

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

rm
sd

 e
ne

rg
y

[e
V]

1e−4

Figure 13.5.: Root mean square deviation of the energy in dependence of the number of
configurations that were added to the training data set by the active learner.
The RMSD is calculated on the validation data set that was created by a
classical MD simulation.

67

14. Summary

This thesis focused on identifying, characterizing and fixing of ML potential problems. It
starts out with investigating why Machine Learning NPT simulations often times fail. In
order to do that, we look at possible causes. First the influence of long range interactions
is investigated and specifically interactions that are longer then the descriptor cutoff. We
set up two test systems, one uses the Coulomb potential and the other one uses the Wolf
potential. The interactions of the Wolf potential are shorter than the descriptor cutoff,
while the coulomb interactions are unlimited. Then we train Machine Learning potentials
on both of those systems. We analyze the results by comparing the Machine Learning
predictions of the energies to the validation data sets. The predictions of the coulomb
system are more noisy then the Wolf system, but the mean field is learned correctly in
both cases.

Next we investigate the influence of the training process. We train systems on different
combinations of energy, forces and pressure and compare the results. The comparisons
of the ML predictions with the validation data show, that it is necessary to train on
pressure for accurate predictions of the pressure. Using this knowledge we are able to
train an accurate well working NVT potential. But when this potential is used to run a
NPT simulation, it fails. Next we explore the influence of the training data especially the
density variation. We sample the training data set from five different NVT simulations
with different volumes above and below the equilibrium density. This results in an NPT
capable ML potential.

Sometimes it can happen that a Machine Learning simulation runs accurately until it
encounters a configuration, that it can not predict. This can cause the simulation to fail.
We try to identify, which configuration is responsible for the failure by looking at the
physical quantities. By identifying the configuration, that is responsible, you can fix the
potential for example by adding the configuration to the training data. When we look at
the time dependence of the physical quantities we find that neither the energies, forces,
temperature, velocities nor pressure can predict that the simulation will fail. This means
we have to change the approach.

We compare the configuration space of DFT and classical simulations. We conduct a
classical and a DFT simulation. Then we take a configuration out of the DFT data
set and compare it to every configuration in the classical data set. The comparisons are
conducted using the REMatch kernel, which can assess how similar two configurations are
using the SOAP descriptor. This process is performed for Argon, NaCl and BMIMBF4.
Argon was the most similar followed by Nacl. BMIMBF4 had the biggest differences

68

in the configuration space between classical and DFT. This is probably because it is a
lot harder to model more complex systems with empirical potentials. Knowledge about
this is valuable for using methods that try to sample the configuration space to generate
training data.

As a last project we implemented an active Learner into MLSuite, which is a software
package. The algorithm consists of five different parts. The active learner tries to improve
an existing potential. It starts by running a simulation a fixed amount of timesteps. Then
it takes the final configuration of the simulation and compares it to the training data
using the REMatch kernel. If the configuration is unique, it gets added to the training
data. Then a new more robust potential is trained. The active learner algorithm is used
to get a NPT potential to work, that previously exploded.

69

15. Zusammenfassung

Diese Arbeit konzentriert sich auf die Identifizierung, Charakterisierung und Behebung
potenzieller Probleme von ML. Zunächst wird untersucht, warum ML NPT-Simulationen
häufig fehlschlagen. Zu diesem Zweck werden mögliche Ursachen untersucht. Zunächst
wird der Einfluss von Wechselwirkungen mit großer Reichweite untersucht, insbesondere
von Wechselwirkungen, die länger sind als der Deskriptor-Cutoff. Wir stellen zwei Test-
systeme auf, von denen eines das Coulomb-Potenzial und das andere das Wolf-Potenzial
verwendet. Die Wechselwirkungen des Wolf-Potentials sind kürzer als der Deskriptor-
Cutoff, während die Coulomb-Wechselwirkungen unbegrenzt sind. Anschließend trainieren
wir die ML Potenziale auf diese beiden Systeme. Wir analysieren die Ergebnisse, in-
dem wir die Vorhersagen der Energien mit den Validierungsdatensätzen vergleichen. Die
Vorhersagen des Coulomb-Systems sind stärker verrauscht als die des Wolf-Systems, aber
das mittlere Feld wird in beiden Fällen korrekt gelernt.

Als nächstes untersuchen wir den Einfluss des Trainingsprozesses. Wir trainieren die
Systeme auf verschiedene Kombinationen von Energie, Kräften und Druck und vergle-
ichen die Ergebnisse. Die Vergleiche der ML-Vorhersagen mit den Validierungsdaten
zeigen, dass es notwendig ist, auf Druck zu trainieren, um genaue Vorhersagen für den
Druck zu erhalten. Mit diesem Wissen sind wir in der Lage, ein genaues, gut funktion-
ierendes NVT-Potenzial zu trainieren. Wenn dieses Potenzial jedoch zur Durchführung
einer NPT-Simulation verwendet wird, versagt es. Als nächstes untersuchen wir den
Einfluss der Trainingsdaten, insbesondere der Dichtevariation. Wir nehmen den Train-
ingsdatensatz aus fünf verschiedenen NVT-Simulationen mit unterschiedlichen Volumina
oberhalb und unterhalb der Gleichgewichtsdichte. Das Ergebnis ist ein NPT-fähiges
ML-Potenzial.

Manchmal kann es vorkommen, dass eine ML Simulation genau läuft, bis sie auf eine
Konfiguration trifft, die sie nicht vorhersagen kann. Dies kann dazu führen, dass die
Simulation fehlschlägt. Wir versuchen anhand der physikalischen Größen herauszufinden,
welche Konfiguration für den Fehler verantwortlich ist. Indem man die verantwortliche
Konfiguration identifiziert, kann man das Problem beheben, indem man beispielsweise
die Konfiguration zu den Trainingsdaten hinzufügt. Wenn wir uns die Zeitabhängigkeit
der physikalischen Größen ansehen, stellen wir fest, dass weder die Energien, Kräfte,
Temperatur, Geschwindigkeiten, Kräfte noch der Druck vorhersagen können, dass die
Simulation versagen wird. Das bedeutet, dass wir den Ansatz ändern müssen.

Wir vergleichen den Konfigurationsraum von DFT- und klassischen Simulationen. Wir
führen eine klassische und eine DFT-Simulation durch. Dann nehmen wir eine Konfig-

70

uration aus dem DFT-Datensatz und vergleichen sie mit jeder Konfiguration im klas-
sischen Datensatz. Die Vergleiche werden mit dem REMatch-Kernel durchgeführt, der
anhand des SOAP-Deskriptors beurteilen kann, wie ähnlich sich zwei Konfigurationen
sind. Dieser Prozess wird für Argon, NaCl und BMIMBF4 durchgeführt. Argon war am
ähnlichsten, gefolgt von Nacl. BMIMBF4 hatte die größten Unterschiede im Konfigura-
tionsraum zwischen klassischer und DFT. Dies liegt wahrscheinlich daran, dass es sehr
viel schwieriger ist, komplexere Systeme mit empirischen Potenzialen zu modellieren.
Das Wissen darüber ist wertvoll für die Verwendung von Methoden, die versuchen, den
Konfigurationsraum abzutasten, um Trainingsdaten zu erzeugen.

Als letztes Projekt haben wir einen aktiven Lerner in MLSuite, ein Softwarepaket, im-
plementiert. Der Algorithmus besteht aus fünf verschiedenen Teilen. Der aktive Lerner
versucht, ein vorhandenes Potenzial zu verbessern. Er beginnt damit, eine Simulation
mit einer festen Anzahl von Zeitschritten durchzuführen. Dann nimmt er die letzte Kon-
figuration der Simulation und vergleicht sie mit den Trainingsdaten unter Verwendung
des REMatch-Kernels. Wenn die Konfiguration einzigartig ist, wird sie zu den Train-
ingsdaten hinzugefügt. Dann wird ein neues, robusteres Potenzial trainiert. Der aktive
Lernalgorithmus wird verwendet, um ein NPT-Potenzial zum Laufen zu bringen, das
zuvor explodiert ist.

71

16. Acknowledgments

I want to thank my supervisor Sam Tovey, for the advice and possibilities he gave me. I
want to thank Fabian Zills for his help when technical programming details were needed
and I want to thank Christian Holm for giving me the resources and possibility to do my
master’s thesis at the ICP.

72

Bibliography

[1] J.A. Barker, R.A. Fisher, and R.O. Watts. Liquid argon: Monte carlo and molecular
dynamics calculations. Molecular Physics, 21(4):657–673, 1971.

[2] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chemical envi-
ronments. Phys. Rev. B, 87:184115, May 2013.

[3] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian ap-
proximation potentials: The accuracy of quantum mechanics, without the electrons.
Phys. Rev. Lett., 104:136403, Apr 2010.

[4] Jörg Behler and Michele Parrinello. Generalized neural-network representation of
high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007.

[5] Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional
neural network potentials. The Journal of Chemical Physics, 134(7):074106, 2011.

[6] Kieron Burke. Perspective on density functional theory. The Journal of Chemical
Physics, 136(15):150901, 2012.

[7] Eve Bélisle, Zi Huang, Sébastien Le Digabel, and Aïmen E. Gheribi. Evaluation
of machine learning interpolation techniques for prediction of physical properties.
Computational Materials Science, 98:170–177, 2015.

[8] Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, and Alexandre
Tkatchenko. Towards exact molecular dynamics simulations with machine-learned
force fields. Nature Communications, 9(1):3887, Sep 2018.

[9] Sandip De, Albert P. Bartók, Gábor Csányi, and Michele Ceriotti. Comparing
molecules and solids across structural and alchemical space. Phys. Chem. Chem.
Phys., 18:13754–13769, 2016.

[10] Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende,
and ChangKyoo Yoo. Synthesis, characterization and application of 1-butyl-3-
methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel.
Arabian Journal of Chemistry, 9(4):578–587, 2016.

[11] Mark Ebden. Gaussian processes: A quick introduction, 2015.

[12] Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz,
George E. Dahl, Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole
von Lilienfeld. Prediction errors of molecular machine learning models lower than

73

hybrid dft error. Journal of Chemical Theory and Computation, 13(11):5255–5264,
Nov 2017.

[13] Daan Frenkel and Berend Smit. Chapter 4 - molecular dynamics simulations. In
Daan Frenkel and Berend Smit, editors, Understanding Molecular Simulation (Sec-
ond Edition). Academic Press, San Diego, second edition edition, 2002.

[14] N. Galamba and B. J. Costa Cabral. First principles molecular dynamics of molten
nacl. The Journal of Chemical Physics, 126(12):124502, 2007.

[15] Lauri Himanen, Marc O.J. Jäger, Eiaki V. Morooka, Filippo Federici Canova,
Yashasvi S. Ranawat, David Z. Gao, Patrick Rinke, and Adam S. Foster. Dscribe:
Library of descriptors for machine learning in materials science. Computer Physics
Communications, 247:106949, 2020.

[16] Haoyan Huo and Matthias Rupp. Unified representation of molecules and crystals
for machine learning. 2018.

[17] R. V. Krems. Bayesian machine learning for quantum molecular dynamics. Phys.
Chem. Chem. Phys., 21:13392–13410, 2019.

[18] Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick
Seewald, Frederick Stein, Teodoro Laino, Rustam Z. Khaliullin, Ole Schütt, Flo-
rian Schiffmann, Dorothea Golze, Jan Wilhelm, Sergey Chulkov, Mohammad Hos-
sein Bani-Hashemian, Valéry Weber, Urban Borštnik, Mathieu Taillefumier, Al-
ice Shoshana Jakobovits, Alfio Lazzaro, Hans Pabst, Tiziano Müller, Robert Schade,
Manuel Guidon, Samuel Andermatt, Nico Holmberg, Gregory K. Schenter, Anna
Hehn, Augustin Bussy, Fabian Belleflamme, Gloria Tabacchi, Andreas Glöß, Michael
Lass, Iain Bethune, Christopher J. Mundy, Christian Plessl, Matt Watkins, Joost
VandeVondele, Matthias Krack, and Jürg Hutter. Cp2k: An electronic structure and
molecular dynamics software package - quickstep: Efficient and accurate electronic
structure calculations. The Journal of Chemical Physics, 152(19):194103, 2020.

[19] Marcel Florin Langer, Alex Goessmann, and Matthias Rupp. Representations of
molecules and materials for interpolation of quantum-mechanical simulations via
machine learning. 2020.

[20] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli,
Rune Christensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer,
Cory Hargus, Eric D Hermes, Paul C Jennings, Peter Bjerre Jensen, James Ker-
mode, John R Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaasb-
jerg, Steen Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen,
Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob Schiøtz, Ole Schütt,
Mikkel Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael Walter,
Zhenhua Zeng, and Karsten W Jacobsen. The atomic simulation environment—a
python library for working with atoms. Journal of Physics: Condensed Matter,
29(27):273002, 2017.

74

[21] Eric Mjolsness and Dennis DeCoste. Machine learning for science: State of the art
and future prospects. Science, 293(5537):2051–2055, 2001.

[22] Frank Noé, Alexandre Tkatchenko, Klaus-Robert Müller, and Cecilia Clementi.
Machine learning for molecular simulation. Annual Review of Physical Chemistry,
71(1):361–390, 2020. PMID: 32092281.

[23] Eric Paquet and Herna Viktor. Computational methods for ab initio molecular
dynamics. Advances in Chemistry, 2018:1–14, 04 2018.

[24] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-
nal of Computational Physics, 117(1):1–19, 1995.

[25] Evgeny V. Podryabinkin and Alexander V. Shapeev. Active learning of linearly
parametrized interatomic potentials. Computational Materials Science, 140:171–
180, 2017.

[26] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von
Lilienfeld. Fast and accurate modeling of molecular atomization energies with ma-
chine learning. Phys. Rev. Lett., 108:058301, Jan 2012.

[27] Robert F. Sekerka. 19 - canonical ensemble. In Robert F. Sekerka, editor, Thermal
Physics, pages 305–335. Elsevier, Amsterdam, 2015.

[28] Burr Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

[29] M.P. Tosi and F.G. Fumi. Ionic sizes and born repulsive parameters in the nacl-
type alkali halides—ii: The generalized huggins-mayer form. Journal of Physics and
Chemistry of Solids, 25(1):45–52, 1964.

[30] Mark E Tuckerman. Ab initiomolecular dynamics: basic concepts, current trends
and novel applications. Journal of Physics: Condensed Matter, 14(50):R1297–R1355,
dec 2002.

[31] Jiang Wang, Simon Olsson, Christoph Wehmeyer, Adrià Pérez, Nicholas E. Charron,
Gianni de Fabritiis, Frank Noé, and Cecilia Clementi. Machine learning of coarse-
grained molecular dynamics force fields. ACS Central Science, 5(5):755–767, May
2019.

[32] Shuwen Yue, Maria Carolina Muniz, Marcos F. Calegari Andrade, Linfeng Zhang,
Roberto Car, and Athanassios Z. Panagiotopoulos. When do short-range atom-
istic machine-learning models fall short? The Journal of Chemical Physics,
154(3):034111, 2021.

[33] T. Zykova-Timan, D. Ceresoli, U. Tartaglino, and E. Tosatti. Physics of solid and
liquid alkali halide surfaces near the melting point. The Journal of Chemical Physics,
123(16):164701, 2005.

75

	Abstract
	Introduction
	Theory
	Molecular Dynamics Simulations
	Classical Molecular Dynamics Simulations
	Ab Initio Molecular Dynamics Simulations
	Density Functional Theory

	Machine Learning Molecular Dynamics
	Material Properties
	Diffusion Coefficient
	Radial Distribution Function

	Classical Potentials
	Born-Mayer-Huggins-Tosi-Fumi Potential
	Coulomb and Wolf Potential

	Gaussian Approximation Potentials
	Gaussian Processes
	Gaussian Process Regression
	An Illustration

	Descriptors
	Smooth Overlap of Atomic Positions
	Atom Centered Symmetry Functions
	Coulomb Matrix
	Software Implementation using QUIP and GAP

	Descriptor Metrics

	Results
	Introduction
	Problem
	Investigation Procedure

	Long Range Interactions
	Accuracy of the Fitting Procedure
	Investigating Descriptors
	Cutoff variation
	Structure and Dynamics

	Training only on virials
	Creating a good NVT potential
	Running NPT simulations
	Density Variation
	Temperature Variation
	Different training approaches

	Encountering Problematic Configurations
	Investigation of Descriptor Space
	Systems to Study
	Comparing Trajectory
	Comparing distributions

	Implementing an Active Learner
	MLSuite
	Algorithm Structure
	Results
	Convergence

	Summary
	Zusammenfassung
	Acknowledgments

